cho p là số nguyên tố.CMR số\(N=2\times3\times7\times...\times p+1\) cũng là số nguyên tố.Từ đó suy ra dãy số nguyên tố là vô hạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 2p+2=p(p+1) vì p là số nguyên tố , p>3 => p lẻ =>p=1 \(⋮\)2=>2(p+1)\(⋮\)4 (1)
nếu p chia 3 dư 1 => p+2 \(⋮\)3 (vì p là số nguyên tố , p>3)
=> p chia 3 dư 2 => p+1 \(⋮\)3=>2(p+1)\(⋮\)3 (2)
từ (1),(2) => 2(p+1) \(⋮\)12
hap 2p+2 \(⋮\)12
Ta có : p là số nguyên tố , p > 3
=> p có dạng 3k+1 ( k thuộc N )
hoặc 3k +2
Xét p = 3k+1 ta có : 5p+1 = 5( 3k+1 ) +1 = 15k +5 +1= 15k +6 chia hết cho 3 ( Loại)
Xét p = 3k+2 ta có : 5p+1 = 5(3k+2) +1= 15k +10+1 = 15k + 11
7p +1 = 7(3k+2) +1 = 21k +14+1 = 21k + 15 chia hết cho 3
=> 7p+1 là hợp số (Thỏa mãn )
Vậy với p là số nguyên tố lớn hơn 3 và 5p+1 là số nguyên tố thì 7p +1 là hợp số
Vì p là số nguyên tố > 3 nên có dạng 3k+1; 3k+2 (k\(\inℕ\))
Thay p=3k+1 vào 5p+1 ta có: 5(3k+1)+1=15k+6 là hợp số (loại)
Thay p=3k+2 vào 5p+2 ta có: 5(3k+2)+1=15k+11 là số nguyên tố (chọn)
Với p=3k+2 ta có: 7p+1=7(3k+2)+1=21k+15 là hợp số
=> đpcm
Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 (k thuộc N)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.
Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).
=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.
Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.
Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.
1.Hai số nguyên tố có tổng là 601- một số lẻ.
=> Trong 2 số đó phải có 1 số nguyên tố chẵn. MÀ số nguyên tố chẵn duy nhất là 2.
Số còn lại là 601 - 2 = 599 cũng là số nguyên tố
Hai số đó là 2 và 599
Nếu $a$ là số nguyên tố thì để $A=\frac{7}{2a}$ viết được dưới dạng số thập phân vô hạn tuần hoàn thì $a=3$