K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2015

\(A=\frac{1}{675}+\frac{1}{676}+.....+\frac{1}{998}\)

\(A<\frac{1}{675}+\frac{1}{675}+....+\frac{1}{675}=324.\frac{1}{675}=0,48\)

\(A>\frac{1}{998}+\frac{1}{998}+....+\frac{1}{998}=\frac{1}{998}.324\approx0,32\)

Vậy 0,32  < A < 0,48 nên phần nguyên của A là 0

23 tháng 4

Để tìm phần nguyên của biểu thức \( A = \left( \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13} \right) \times 231 \), chúng ta cần tính giá trị của \( A \) trước, sau đó lấy phần nguyên của kết quả.

Đầu tiên, tính tổng của các phân số:

\[ A = \left( \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13} \right) \]

\[ = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13} \]

Bây giờ, hãy tính tổng này:

\[ A = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13} \]
\[ = \frac{4291}{4290} \]

Bây giờ, ta nhân \( A \) với 231:

\[ A \times 231 = \frac{4291}{4290} \times 231 \]
\[ = 231 + \frac{231}{2} + \frac{231}{3} + \frac{231}{5} + \frac{231}{7} + \frac{231}{11} + \frac{231}{13} \]

Sau đó, chúng ta sẽ lấy phần nguyên của tổng này. Tức là, phần nguyên của \( A \times 231 \) là 231 cộng với phần nguyên của các phân số dư:

\[ 231 + \left\lfloor \frac{231}{2} \right\rfloor + \left\lfloor \frac{231}{3} \right\rfloor + \left\lfloor \frac{231}{5} \right\rfloor + \left\lfloor \frac{231}{7} \right\rfloor + \left\lfloor \frac{231}{11} \right\rfloor + \left\lfloor \frac{231}{13} \right\rfloor \]

\[ = 231 + 115 + 77 + 46 + 33 + 21 + 17 \]
\[ = 231 + 309 \]

\[ = 540 \]

Vậy, phần nguyên của biểu thức \( A \times 231 \) là 540.

19 tháng 1 2018

\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}\cdot\frac{998}{1000}\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{499}{1000}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{499}{1000}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{499}{1000}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{499}{1000}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{499}{1000}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{1000}\)

=>x+1=1000

=>x=999

6 tháng 4 2017

bấm máy tính ra luôn

12 tháng 10 2021

:)) ko bt làm :))

                                                                                    kí tên

                                                                                   cái nịt

28 tháng 10 2022

reeeeeeeee

 

14 tháng 4 2017

=1/1*2+1/2*3+...+1/999*1000

=1/1-1/2+1/2-1/3+...+1/999-1/1000

=1-1/1000

26 tháng 4 2017

So sánh A và B biết;

A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{999}{1000}\)

B = \(\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{998}{999}\)

20 tháng 3 2016

xét vế trái

=(1+1/3+1/5+...+1/1989)-(1/2+1/4+...+1/1990)

=(1+1/2+1/3+1/4+...+1/1990)-2.(1/2+1/4+...+1/1990)

=(1+1/2+1/3+1/4+...+1/1990)-!1+1/2+1/3+1/4+...+1/995)

=1/996+1/997+.../1+1990

vậy 1-1/2+1/3-1/4+...-1/1990=1/996+1/997+...+1/1990

20 tháng 3 2016

cmr 1-$\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.......-\frac{1}{1990}=\frac{1}{996}+\frac{1}{997}+\frac{1}{998}+.......+\frac{1}{1990}$

30 tháng 11 2016

Bài này trên gg có

13 tháng 5 2023

Ta có: \sqrt[{k + 1}]{{\frac{{k + 1}}{k}}} > 1,\left( {k = \overline {1,n} } \right)

Áp dụng bất đẳng thức Cauchy cho k + 1 số ta có: 

\begin{matrix}
 \sqrt[{k + 1}]{{\dfrac{{k + 1}}{k}}} = \sqrt[{k + 1}]{{\dfrac{{1 + 1 + .... + 1}}{k}\dfrac{{k + 1}}{k}}} < \dfrac{{1 + 1 + ... + 1 + \dfrac{{k + 1}}{k}}}{{k + 1}} = \dfrac{k}{{k + 1}} + \dfrac{1}{k} = 1 + \dfrac{1}{{k\left( {k + 1} \right)}} \hfill \\
 \Rightarrow 1 < \sqrt[{k + 1}]{{\dfrac{{k + 1}}{k}}} < 1 + \left( {\dfrac{1}{k} - \dfrac{1}{{k + 1}}} \right) \hfill \\ 
\end{matrix}

Lần lượt cho k = 1, 2, 3, ... rồi cộng lại ta được 

n < \sqrt 2 + \sqrt[3]{{\frac{3}{2}}} + ... + \sqrt[{n + 1}]{{\frac{{n + 1}}{n}}} < n + 1 - \frac{1}{n} < n + 1 
 \Rightarrow \left| \alpha \right| = n