K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

Gọi các đồ thị có CT chung là \(ax+b\)

\(a,\Leftrightarrow\left\{{}\begin{matrix}-a+b=-5\\a=0;b\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-5\end{matrix}\right.\Leftrightarrow\left(d_1\right):y=-5\\ b,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\a=2;b\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\Leftrightarrow\left(d_2\right):y=2x+7\\ c,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow\left(d_3\right):y=-2x+3\\ d,\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-5\\b=0\end{matrix}\right.\Leftrightarrow\left(d_4\right):y=-5x\)

3 tháng 12 2021

câu c bạn giải kỹ hơn đc ko 

10 tháng 3 2022

Gọi đường thẳng đi qua A là d'.

a) Ta có: \(d'\perp d.\)

\(\Rightarrow\) VTPT của d là VTCP của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)

b) Ta có: \(d'//d.\)

\(\Rightarrow\) VTPT của d là VTPT của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)

11 tháng 1 2018

a) d 1 : 3x + 2y + 6 = 0

b) Giao của d và Δ là A(2;0). Lấy B(0; −3) thuộc d. Ảnh của B qua phép đối xứng của đường thẳng Δ là B′(5;2). Khi đó d' chính là đường thẳng AB′: 2x − 3y – 4 = 0

NV
4 tháng 2 2021

1.

Đường thẳng song song d nên nhận \(\left(2;3\right)\) là 1 vtpt

Phương trình: \(2\left(x-1\right)+3\left(y-1\right)=0\Leftrightarrow2x+3y-5=0\)

b.

\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)

\(=\dfrac{1}{2}\left|-2.2-3.1\right|=\dfrac{7}{2}\)

c.

Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{3}{2};\dfrac{5}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\dfrac{1}{2};\dfrac{3}{2}\right)=\dfrac{1}{2}\left(1;3\right)\)

Pt tham số: \(\left\{{}\begin{matrix}x=1+t\\y=1+3t\end{matrix}\right.\)

d. Phương trình:

\(2\left(x-1\right)+1\left(y-1\right)=0\Leftrightarrow2x+y-3=0\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Phương trình đường tròn tâm A bán kính AB là \({\left( {x + 1} \right)^2} + {y^2} = 17\)

b) Ta có \(\overrightarrow {{u_{AB}}}  = \overrightarrow {AB}  = \left( {4;1} \right) \Rightarrow \overrightarrow {{n_{AB}}}  = \left( {1; - 4} \right)\).

Phương trình AB là \(1\left( {x + 1} \right) - 4y = 0 \Leftrightarrow x - 4y + 1 = 0\).

c) Bán kính của đường tròn tâm O, tiếp xúc với đường thẳng AB là

\(R = d\left( {O,AB} \right) = \frac{{\left| {0 - 4.0 + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2}} }} = \frac{1}{{\sqrt {17} }}\)

Phương trình đường tròn tâm O tiếp xúc AB là \({x^2} + {y^2} = \frac{1}{{17}}\)

13 tháng 8 2018

Lấy một điểm thuộc d, chẳng hạn M = (0; 1).

Khi đó M′ = T v → ( M ) = (0 − 2; 1 + 1) = (−2; 2) thuộc d'.

Vì d' song song với d nên phương trình của nó có dạng 2x − 3y + C = 0.

Do M' ∈ d′ nên 2.(−2) − 3.2 + C = 0. Từ đó suy ra C = 10 .

Do đó d' có phương trình 2x − 3y + 10 = 0.