Chứng minh rằng:
\(\left(a^2+b^2\right)\le2.\left(a^2+b^2\right)\forall a.b\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)
\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2\le0\)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow-\left(a-b\right)^2\le0\) ( dấu "=" xảy ra ⇔ a=b )
\(\Leftrightarrow1+b^2+a^2\left(b^3+b\right)\le\left(2b^3+2\right)a^2-2\left(b^3+1\right)a+2b^3+2\)
\(\Leftrightarrow\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\ge0\)
Xét tam thức bậc 2: \(f\left(a\right)=\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\)
Ta có: \(b^3+2-b\ge3b-b=2b>0\)
\(\Delta'=\left(b^3+1\right)^2-\left(b^3-b+2\right)\left(2b^3-b^2+1\right)\)
\(\Delta'=-\left(b-1\right)^2\left(b^4+b^3-b^2+b+1\right)\le0\) ; \(\forall b>0\)
\(\Rightarrow f\left(a\right)\ge0\) ; \(\forall a\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(1;1\right)\)
a, Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\Rightarrow a=kb;c=kd\)
Thay:
\(\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\)
=> đpcm
Lời giải:Đặt $A=f(1)=a+b+c; B=f(-1)=a-b+c; C=f(0)=c$
Theo đề bài: $|A|, |B|, |C|\leq 1$
\(|a|+|b|+|c|=|\frac{A+B}{2}-C|+|\frac{A-B}{2}|+|C|\)
\(\leq |\frac{A+B}{2}|+|-C|+|\frac{A-B}{2}|+|C|=|\frac{A}{2}|+|\frac{B}{2}|+|C|+|\frac{A}{2}|+|\frac{-B}{2}|+|C|\)
\(=|A|+|B|+2|C|\leq 1+1+2=4\) (đpcm)
a2≤ 2a2 ; b2≤ 2b2
=> a2 + b2 ≤ 2a2 + 2b2 ( = 2 ( a2 + b2 ) )
\(\left(a^2+b^2\right)\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2-2a^2-2b^2\le0\)
\(\Leftrightarrow-a^2-b^2\le0\)
\(\Leftrightarrow-\left(a^2+b^2\right)\le0\)
Vì \(a^2+b^2\ge0\Rightarrow-\left(a^2+b^2\right)\le0\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=0\)