K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

\(A=\dfrac{x^2-2x+2011}{x^2}=\dfrac{\left(x-1\right)^2}{x^2}+\dfrac{2010}{x^2}\ge2010\Leftrightarrow x=1\)

19 tháng 2 2016

du vì ba của anh thanh niên bị ốm đến thăm 

19 tháng 2 2016

đưa lại đề cho mình đi,mình chẳng hiểu đề bn viết

10 tháng 2 2019

1 ) \(B=\dfrac{x^2-2x+2011}{x^2}=1-\dfrac{2}{x}+\dfrac{2011}{x^2}\)

Đặt \(\dfrac{1}{x}=a\) , khi đó :

\(B=1-2a+2011a^2\)

\(=2011\left(a^2-2a.\dfrac{1}{2011}+\dfrac{1}{2011^2}\right)+\dfrac{2010}{2011}\)

\(=2011\left(a-\dfrac{1}{2011}\right)^2+\dfrac{2010}{2011}\ge\dfrac{2010}{2011}\)

Dấu " = " xảy ra \(\Leftrightarrow a=\dfrac{1}{2011}\Leftrightarrow x=2011\)

2 ) ĐKXĐ : \(x\ne-1\)\(C=\dfrac{3\left(x+1\right)}{x^3+x^2+x+1}=\dfrac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\dfrac{3}{x^2+1}\le\dfrac{3}{1}=3\)

Dấu " = " xảy ra \(\Leftrightarrow x=0\)

haha

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

15 tháng 12 2019

x- 2x + 2013 / x

x2 -2x + 1 + 2012 / x2

(x -1)2 + 2012/x2

(x -1)2/x+  2012/x2

GTNN là 2012/x khi (x -1)bàng 0 => x=1 ( khó viết :v)