CHỨNG MINH RẰNG
4xn+1 phần 6xn+1
n thuộc N* và phân số đó tối giản.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC ( n + 1 ; 2n + 1 )
=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d
=> 2n + 1 ⋮ d => 1.( 2n + 1 ) ⋮ d => 2n + 1 ⋮ d
=> [ ( 2n + 2 ) - ( 2n + 1 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( n + 1 ; 2n + 1 ) = 1 nên \(\frac{n+1}{2n+1}\) là p/s tối giản ( đpcm )
Gọi d là ước chung của n + 1 và 2n + 1.
Ta có :
n+1 chia hết cho d => 2n+2 chia hết cho d
2n+1 chia hết cho d
=> ( 2n + 2 ) - ( 2n + 1 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> \(\frac{n+1}{2n+1}\)là phân số tối giản
Vậy \(\frac{n+1}{2n+1}\)là phân số tối giản.
Gọi d là ƯC của n và n+1
=> n chia hết cho d và n+1 chia hết cho d
=> (n+1)-n chia hết d
=> 1 chia hết cho d
=> n/n+1 là p/s tối giản
b;Gọi ƯCLN (n;n+1) là :d
ta có :n chia hết cho d;n+1 chia hết cho d
=> n+1 - n chia hết cho d
=> 1 chia hết cho d
=>1=d
vậy \(\frac{n}{n+1}\) là phân số tối giản
b;Gọi ƯCLN (n;n+1) là :d
ta có :n chia hết cho d;n+1 chia hết cho d
=> n+1 - n chia hết cho d
=> 1 chia hết cho d
=>1=d
vậy \(\frac{n}{n+1}\)là phân số tối giản
Giải:
Gọi ƯCLN (n;n+1) là :d
Ta có :n chia hết cho d;n+1 chia hết cho d
=> n+1 - n chia hết cho d
=> 1 chia hết cho d
=>1=d
vậy n/n+1 là phân số tối giản.
Chúc bạn học tốt^_^
gọi d thuộc ước chung lớn nhất của n+1 và 2n+1(d thuộc N*)
suy ra n+1 chia hết cho d
2n+1 chia hết cho d
nên 2.(n+1) chia hết cho d
2n+1 chia hết cho d
2n+2 chia hết chod
2n+1 chia hết cho d
(2n+2)-(2n+1) chia hết cho d
nên 1 chia hết cho d
vậy d=1
c/m p/số n+1/2n+1 với n thuộc N* là phân số tối giản
Gọi ƯCLN(4n+1;6n+1)=d
=> 4n+1 chia hết cho d
6n+1 chia hết cho d
=> 3(4n+1) chia hết cho d
2(6n+1) chia hết cho d
=> 12n+3 chia hết cho d
12n+2 chia hết cho d
=> (12n+3)-(12n+2) chia hết cho d
=> 1 chia hết cho d
=> d=1
Vậy 4n+1/6n+1 là phân số tối giản
Chúc bạn học tốt :)) vananh nguyendao
Theo cách mình :
Bạn chỉ việc chứng minh ƯCLN của nó bằng 1 , rồi suy ra phân số đó tối giảm .
( Mình nghĩ là như vậy , sai thì thôi nha )
thôi thì cũng cảm ơn bạn