Các bạn làm hộ tớ vs
Tìm n nguyên sao cho 2n^ - 6n + 7/n+3
Cảm ơn nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để P có giá trị nguyên thì :
2n - 3 chia hết cho n + 1
=> (2n - 3) - 2.(n + 1) chia hết cho (n + 1)
=> 2n - 3 - 2n - 2 chia hết cho n + 1
=> - 5 chia hết cho n + 1
=> n + 1 là Ư(5)
Mà Ư(5) = {- 5; - 1; 1; 5}
=> n + 1 thuộc {- 5; -1; 1; 5}
=> n thuộc {- 6; -2; 0; 4}
(Nhưng thật sự là bài lớp 6 mà, mình mới học lớp 6 thôi, ko lừa đâu)
Ai biết được ,mình đặt câu hỏi thì mình không biết còn nếu biết thì hỏi làm cái gì?
\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).
Bài giải
Ta có: 6n + 4 \(⋮\)2n + 1 (n \(\inℤ\))
=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1
=> 1 \(⋮\)2n + 1
=> 2n + 1 \(\in\)Ư (1)
Ư (1) = {1; -1}
2n + 1 = 1 hay -1
2n = 1 - 1 hay -1 - 1
2n = 0 hay -2
n = 0 : 2 hay -2 : 2
n = 0 hay -1
Vậy n = 0 hay -1
\(A=\frac{1-6n}{2n-3}=\frac{-6n+9-8}{2n-3}=-3+\frac{-8}{2n-3}\)
Để \(A\in Z\Rightarrow\frac{-8}{2n-3}\in Z\)
\(\Rightarrow-8⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(-8\right)\)
\(\Rightarrow2n+3\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Vì \(2n+3\)là số lẻ
\(\Rightarrow2n+3\in\left\{1;-1\right\}\)
\(\Rightarrow2n\in\left\{-2;-4\right\}\)
\(\Rightarrow n\in\left\{-1;-2\right\}\)
Vậy...
A=\(\frac{1-6n}{2n-3}\)
=\(\frac{-6n+9-8}{2n-3}\)
= \(-3+\frac{-8}{2n-3}\)
để \(A\inℤ\Leftrightarrow\frac{-8}{2n-3}\inℤ\)
\(\Leftrightarrow-8⋮2n+3\)
\(\Leftrightarrow2n+3\inƯ\left(-8\right)\)
MÀ Ư(-8)=\(\hept{\pm1;\pm2;\pm4;\pm8}\)
VÌ 2n+3 là số lẻ nên ta có bảng:
2n+3 | 1 | -1 |
2n | -2 | -4 |
n | -1 | -2 |
vậy n\(\in\hept{-1;-2}\)
thì A là 1 số nguyên
\(A=\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{2n-1-\left(n-14\right)}{n+8}=\frac{n+13}{n+8}\)
Để A thuộc Z thì \(n+13⋮n+8\Rightarrow n+13-\left(n+8\right)⋮n+8\)
\(\Rightarrow5⋮n+8\Rightarrow n+8\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
\(\Leftrightarrow n\in\left\{-7;-3;-9;-13\right\}\)
OK
2n^ là gì
2n^2 nha xin lỗi