Cho các số nguyên a,b,c,d thỏa mãn : a + b = c + d và \(a^2+b^2=c^2+d^2\)
Chứng minh rằng \(a^{2018}+b^{2019}=c^{2019}+d^{2018}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta có:\(A=2018^2+2019^2+2019^2.2018^2\)
\(=\left(2018^2-2.2018.2019+2019^2\right)+2.2018.2019+\left(2018.2019\right)^2\)
\(=\left(2019.2018\right)^2+2.2018.2019+1^2=\left(2019.2018+1\right)^2\)là số chính phương (đpcm)
c)Ta có:Xét hiệu a^2+b^2+c^2+d^2-a(b+c+d),ta có:
\(a^2+b^2+c^2+d^2-a\left(b+c+d\right)=a^2+b^2+c^2+d^2-ab-ac-ad\)
\(=\left(\frac{1}{4}a^2-ab+b^2\right)+\left(\frac{1}{4}a^2-ac+c^2\right)+\left(\frac{1}{4}a^2-ad+d^2\right)+\frac{a^2}{4}\)
\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}\right)^2\ge0\forall a,b,c,d\left(đpcm\right)\)
\(\Rightarrow a^2+b^2+c^2\ge a\left(b+c+d\right)-d^2\)
Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}b=c=d=\frac{a}{2}\\\frac{a}{2}=0\end{cases}\Leftrightarrow}a=b=c=d=0\)
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Thya các giá trị của a, b, c., d vào M . Tính đc M = 0
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Ở link trên đã tìm đc các giá trị của a, b, c, d thay vào tìm đc M = 0.
Sửa đề : Cần chứng minh \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Đặt :\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=k\)
\(\Rightarrow\hept{\begin{cases}a=2017k\\b=2018k\\c=2019k\end{cases}}\)
Khi đó :
\(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(208k-2019k\right)\)
\(=4\cdot\left(-k\right)\cdot\left(-k\right)=4k^2\)
\(\left(c-a\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)
Do đó : \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
đội tuyển toán ah,sao bài khó zậy
bn này đội tuyển toán đấy, năm lp 6 đc giải nhất huyện cơ mà