Tính giá trị của biểu thức :(thử thách online):
3/4.8/9.15/16.........99/100.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{99}{100}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{9.11}{10^2}\)
( đoạn này bạn rút )
\(=\frac{1}{2}.\frac{11}{10}=\frac{22}{20}\)
(mik cx ko chắc, có j sai ib mik sẽ sửa ạ)
\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{99}{100}\)
\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot2}+\frac{3\cdot5}{4\cdot2}+...+\frac{9\cdot11}{10\cdot10}\)
\(=\frac{1}{2}\cdot\frac{11}{10}=\frac{11}{20}\)
P=3/4.8/9.15/16...99/100
P = 3.8.15...99 / 4.9.16...100
P = 1.3.2.4.3.5...9.11 / 2.2.3.3.4.4...10.10
P = (1.2.3.4...9) . (1.2.3.4...9) / (2.3.4...10) . (2.3.4...10)
P = 1.11 / 10.2
P = 11 / 20
3/4.8/9.15/16......9999/10000
= 3.8.15.....9999/4.9.16......10000
=101/50
a; \(\dfrac{5}{6}\) + \(\dfrac{5}{12}\) + \(\dfrac{5}{20}\) + ... + \(\dfrac{5}{132}\)
= 5.(\(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + ..+ \(\dfrac{1}{132}\))
= 5.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + ... + \(\dfrac{1}{11.12}\))
= 5.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ...+ \(\dfrac{1}{11}\) - \(\dfrac{1}{12}\))
= 5.(\(\dfrac{1}{2}\) - \(\dfrac{1}{12}\))
= 5.(\(\dfrac{6}{12}\) - \(\dfrac{1}{12}\))
= 5.\(\dfrac{5}{12}\)
= \(\dfrac{25}{12}\)
= ( 1 x 3 / 2 x 2 ) . ( 2 x 4 / 3 x 3 ) . ( 3 x 5 / 4 x 4 ) . . . ( 6 x 8 / 7 x 7 ) ( mk viết thế cho rõ nhìn khi lm bỏ ngoặc cx dc )
= 1 x 3 x 2 x 4 x 3 x 4 x ... x 6 x 8 / 2 x 2 x 3 x 3 x 4 x 4 x ... x 7 x 7
= 1 x 8 / 2 x 7
= 8 / 14
= 4/7
Tk nha !!
Ta có :
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}........\frac{48}{49}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.......\frac{6.8}{7.7}\)
\(=\frac{\left(1.2.3.....6\right).\left(3.4.5.....8\right)}{\left(2.3.4......7\right).\left(2.3.4.....7\right)}\)
\(=\frac{1.2.3.....6}{2.3.4.....7}.\frac{3.4.5......8}{2.3.4......7}\)
\(=\frac{1}{7}.4\)
\(=\frac{4}{7}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}\)
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\)
\(A=\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
max easy
\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{99}{100}=\frac{1\cdot3}{2\cdot2}=\frac{2\cdot4}{3\cdot3}=\frac{3\cdot5}{4\cdot4}\cdot...\cdot\frac{9\cdot11}{10\cdot10}=\frac{1}{2}\cdot\frac{11}{10}=\frac{11}{20}\)