K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

Đặt \(x-y=a;xy=b\)

\(\Rightarrow16a^3+48ab-15b=371\)

\(\Rightarrow b=\frac{371-16a^3}{48a-15}\)

\(\Rightarrow16a^3-371⋮48a-15\)

Dùng phép chia đa thức ..... ta được :

\(284553⋮48a-15\)

Mà : \(284533=3^5\cdot1171\)

\(48a-15\ge33\)

Dùng đồng dư 48 .....

\(\Rightarrow\left[{}\begin{matrix}48a-15=3^4\\48a-15=1171\cdot3^3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=2,b=3\\a=659,b=-144829\end{matrix}\right.\)

Dùng định lý Vi-et đảo loại được trường hợp 2

\(\Rightarrow a=2;b=3\Rightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vậy ....

#Kaito#

16 tháng 1 2021

Không hiểu sao cái dòng đó lại nhảy như thế. Mình đánh lại.

Giả thiết tương đương với:

\((x+y+1)(x^2+y^2+1-xy-x-y)=p\).

Do x + y + 1 > 1 và p là số nguyên tố nên x + y + 1 = p và \(x^2+y^2+1-x-y-xy=1\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)=3xy\le\dfrac{3}{4}\left(x+y\right)^2\Rightarrow x+y\le4\Rightarrow p\le5\).

Ta thấy 5 là số nguyên tố. Đẳng thức xảy ra khi x = y = 2.

Vậy max p = 5 khi x = y = 2.

26 tháng 1 2018

+, Nếu x = 0 => ko tồn tại y thuộc Z

+, Nếu x khác 0 => x^2 >= 1 => x^2-1 >= 0

Có : y^3 = x^3+2x^2+3x+2 > x^3 ( vì 2x^2+3x+2 > 0 )

Lại có : y^3 = (x^3+3x^3+3x+1)-(x^2-1) = (x+1)^3 - (x^2-1) < = (x+1)^3

=> x^3 < y^3 < = (x+1)^3

=> y^3 = (x+1)^3

=> x^2-1 = 0

=> x=-1 hoặc x=1

+, Với x=-1 thì y = 0

+, Với x=1 thì y = 2

Vậy .............

Tk mk nha

26 tháng 1 2018

Ta có: \(x^3+2x^2+3x+2=y^3\)                             (1)

Xét \(2x^2+3x+2=2\left(x^2+\frac{3}{2}x\right)+2=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+2-2.\frac{9}{16}\)

\(=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\) Vì \(\left(x+\frac{3}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}>0\)

\(\Rightarrow y^3>x^3\Rightarrow y^3\ge\left(x+1\right)^3\)

\(\Rightarrow x^3+2x^2+3x+2\ge\left(x+1\right)^3\) \(\Rightarrow x^3+2x^2+3x+2\ge x^3+3x^2+3x+1\)

\(\Rightarrow x^3+3x^2+3x+1-x^3-2x^2-3x-2\le0\)

\(\Rightarrow x^2-1\le0\Rightarrow x^2\le1\) Vì \(x\in Z\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)

+ TH1: x2 = 0 => x =0 Thay vào pt (1) ta được y3 = 2 (loại) vì y nguyên

+ TH2 : x2 = 1 => \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Thay x=1 vào pt (1) ta đc: 1+2+3+2 = 8 = y3 => y = 2

Thay x= -1 vào pt (1) ta đc: -1 + 2 -3 +2 = 0 =y3 => y = 0

Vậy cặp (x;y) là (1;2) ; (-1;0).