GIẢI GIÚP EM CÂU C !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
c, Gọi \(\left(D_3\right):y=ax+b\) là đt cần tìm
\(\Leftrightarrow\left\{{}\begin{matrix}a=-2;b\ne0\\3x+3=ax+b,\forall x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\-a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-2\end{matrix}\right.\)
Vậy \(\left(D_3\right):y=-2x-2\)
Gọi giao điểm AE và BP là F;
Gọi giao điểm QD và AB là H;
Gọi kéo dài AD cắt BF tại P'
Dễ cm M là trung điểm AC
Xét \(\Delta OMC\) có QD//CM\(\Rightarrow\dfrac{OD}{OM}=\dfrac{QD}{CM}\)(hệ quả tales)
Tương tự với \(\Delta OAM\) có \(\dfrac{OD}{OM}=\dfrac{DH}{AM}\)
\(\Rightarrow\dfrac{QD}{CM}=\dfrac{DH}{AM}\)
Mà CM=AM (vì M là tđ AC)
\(\Rightarrow QD=DH\)
Dễ cm P là trung điểm BF
Xét \(\Delta ABP'\) có DH//BP'
\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{AD}{AP'}\)(tales)
Tương tự với \(\Delta AFP'\) có \(\dfrac{QD}{FP'}=\dfrac{AD}{AP'}\)
\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{QD}{FP'}\)
Mà DH=QD (cmt)
\(\Rightarrow BP'=FP'\)
\(\Rightarrow\)P' là trung điểm BF
\(\Rightarrow P\equiv P'\)
\(\Rightarrow A,D,P\) thẳng hàng
c: |x1/x2|-2=0
=>x1=2x2 hoặc x1=-2x2
TH1: x1=2x2
x1+x2=m-1
=>3x2=m-1
=>x2=(m-1)/3 và x1=(2m-2)/3
x1*x2=-m^2-2
=>2(m-1)^2/9=-m^2-2
=>-9m^2-18=2m^2-4m+2
=>-11m^2+4m-20=0
=>Loại
TH2: x1=-2x2
x1+x2=m-1
=>-x2=m-1
=>x2=-m+1
=>x1=2m-2
x1*x2=-m^2-2
=>-2(m-1)^2=-m^2-2
=>-2(m^2-m+1)+m^2+2=0
=>-2m^2+2m-2+m^2+2=0
=>-m^2+2m=0
=>m=0 hoặc m=2
a: Xét ΔABD vuông tại A và ΔKBD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)
Do đó: ΔABD=ΔKBD
b: Ta có: ΔABD=ΔKBD
nên DA=DK
=>ΔDAK cân tại D
hay \(\widehat{DAK}=\widehat{DKA}\)
c: OM vuông góc BC, BD vuông góc BC
=>OM//BD
=>góc BDO=góc DOM
ΔDBO=ΔDFO
=>góc BDO=góc ODM
=>góc ODM=góc DOM
=>ΔDMO cân tại M
=>MO=MD
OM//BD
=>AD/AM=BD/OM
màAD/AM=(AM+DM)/AM=1+DM/AM
và OM=DN
nênBD/DM-DM/AM=1
c: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=64-32=32\)
hay \(AB=4\sqrt{2}\left(cm\right)\)
Xét ΔABC vuông tại A có AB=AC
nên ΔBAC vuông cân tại A
Suy ra: \(\widehat{B}=\widehat{C}=45^0\)
a: góc OBA+góc OCA=90+90=180 độ
=>ABOC nội tiếp
b: góc OIE=góc OCE=90 độ
=>OICE là tứ giác nội tiếp
=>góc OEI=góc OCI
=>góc OEI=góc OCB
OBAC nội tiếp
=>góc OCB=góc OAB
=>góc OEI=góc OAB
=>góc OEI=góc OAI
=>OIAE nội tiếp
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
câu c anh ơi