K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 3 2019

2/ Gọi \(M\left(a;0\right)\)

\(\Rightarrow\) khoảng cách từ M tới \(d\) là:

\(\frac{\left|a.1+2.0-3\right|}{\sqrt{1^2+2^2}}=\sqrt{5}\Leftrightarrow\left|a-3\right|=5\Rightarrow\left[{}\begin{matrix}a=8\\a=-2\end{matrix}\right.\)

Vậy có 2 điểm M thỏa mãn: \(\left[{}\begin{matrix}M\left(8;0\right)\\M\left(-2;0\right)\end{matrix}\right.\)

3/Gọi \(A\left(a;0\right);B\left(0;b\right)\)

Do \(OAB\) vuông cân tại O

\(\Rightarrow OA=OB\Rightarrow\left|x_A\right|=\left|y_B\right|\Rightarrow\left|a\right|=\left|b\right|\Rightarrow a=\pm b\)

TH1: \(a=b\Rightarrow A\left(a;0\right);B\left(0;a\right)\Rightarrow\overrightarrow{AB}=\left(-a;a\right)\)

\(\Rightarrow\) đường thẳng AB nhận \(\overrightarrow{n_{AB}}=\left(1;1\right)\) là 1 vtpt

\(\Rightarrow\) phương trình đường thẳng AB:

\(1\left(x-2\right)+1\left(y-5\right)=0\Leftrightarrow x+y-7=0\)

TH2: \(a=-b\Rightarrow A\left(a;0\right);B\left(0;-a\right)\Rightarrow\overrightarrow{BA}=\left(a;a\right)\)

\(\Rightarrow\) đường thẳng AB nhận \(\overrightarrow{n_{AB}}=\left(1;-1\right)\) là một vtpt

\(\Rightarrow\) phương trình AB:

\(1\left(x-2\right)-1\left(y-5\right)=0\Leftrightarrow x-y+3=0\)

//Đường thẳng AB chính là đường thẳng d

14 tháng 3 2019

1. \(\left(d\right):x+2y-4=0\)

\(\Leftrightarrow2y=4-x\)

\(\Leftrightarrow y=2-\frac{x}{2}\)

\(\left(d'\right):x-3y+6=0\)

\(\Leftrightarrow y=\frac{x+6}{3}\)\(=2+\frac{x}{3}\)

Giả sử (d) và (d') cắt nhau:

\(\Rightarrow2+\frac{x}{3}-2+\frac{x}{2}=0\)

\(\Rightarrow5x=6\Leftrightarrow x=\frac{6}{5}\)\(\Rightarrow y=\frac{12}{5}\)

Vậy (d) cắt (d').

Câu 1: 

Gọi M(1;0) thuộc (d)

Theo đề, ta có: \(\overrightarrow{IM'}=k\cdot\overrightarrow{IM}\)

=>\(\left\{{}\begin{matrix}x_{M'}-1=k\cdot\left(1-1\right)=0\\y_{M'}=k\cdot\left(0-0\right)=0\end{matrix}\right.\)

=>M'(1;0)

Thay M' vào x+2y+c=0, ta được:

1+c=0

=>c=-1

a: Để (d) vuông góc với x-2y=3 thì \(\dfrac{1}{2}\left(m-2\right)=-1\)

\(\Leftrightarrow m-2=-2\)

hay m=0

5 tháng 11 2021

Còn tìm n sao bn

NV
16 tháng 11 2021

Gọi d' là ảnh của d qua phép tịnh tiến \(\Rightarrow\) d' cùng phương d

Phương trình d' có dạng: \(3x+2y+c=0\)

Lấy \(A\left(0;2\right)\) là 1 điểm thuộc d

\(T_{\overrightarrow{v}}\left(A\right)=A'\Rightarrow A'\in d'\)

\(\left\{{}\begin{matrix}x'=0+\left(-1\right)=-1\\y'=2+3=5\end{matrix}\right.\) \(\Rightarrow A'\left(-1;5\right)\)

Thế vào pt d':

\(3.\left(-1\right)+2.5+c=0\Rightarrow c=-7\)

Phương trình d': \(3x+2y-7=0\)

16 tháng 11 2021

Cách 2:

Gọi d' là ảnh của d qua phép tịnh tiến  d' cùng phương d

Ta có: \(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=x'-a=x'-\left(-1\right)=x'+1\\y=y'-b=y'-3\end{matrix}\right.\)

Thay \(x;y\) vào d ta đc:

\(\Rightarrow\left(d'\right):3\left(x'+1\right)+2\left(y'-3\right)-4=0\)

\(\Rightarrow\left(d'\right):3x'+2y'-7=0\)

Vậy ảnh của (d) là \(\left(d'\right):3x+2y-7=0\)

NV
5 tháng 5 2020

Đường tròn tâm \(O\left(0;0\right)\) bán kính \(R=2\)

a/ Tiếp tuyến d' song song d nên có dạng: \(3x-y+c=0\) \(\left(c\ne17\right)\)

Do d' là tiếp tuyến

\(\Leftrightarrow d\left(O;d'\right)=R\)

\(\Leftrightarrow\frac{\left|3.0-1.0+c\right|}{\sqrt{3^2+\left(-1\right)^2}}=2\Leftrightarrow\left|c\right|=2\sqrt{10}\Rightarrow c=\pm2\sqrt{10}\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)

b/ d' vuông góc d nên pt có dạng \(2x-y+c=0\)

\(d\left(O;d'\right)=R\Leftrightarrow\frac{\left|2.0-1.0+c\right|}{\sqrt{2^2+1^2}}=2\Rightarrow\left|c\right|=2\sqrt{5}\Rightarrow c=\pm2\sqrt{5}\)

Có 2 tiếp tuyến t/m: \(\left[{}\begin{matrix}2x-y+2\sqrt{5}=0\\2x-y-2\sqrt{5}=0\end{matrix}\right.\)

c/ Tiếp tuyến d' qua M nên pt có dạng:

\(a\left(x-2\right)+b\left(y+2\right)=0\Leftrightarrow ax+by-2a+2b=0\)

\(d\left(O;d'\right)=R\Leftrightarrow\frac{\left|0.a+0.b-2a+2b\right|}{\sqrt{a^2+b^2}}=2\)

\(\Leftrightarrow\left|a-b\right|=\sqrt{a^2+b^2}\)

\(\Leftrightarrow a^2-2ab+b^2=a^2+b^2\)

\(\Leftrightarrow2ab=0\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\)

NV
5 tháng 5 2020

Chắc bạn viết sai đề, chưa bao giờ thấy đường tròn nào có pt bậc 4 như vậy cả

Pt đường tròn có dạng kiểu như \(x^2+y^2=4\)

Còn pt \(x^4+y^4=4\) nó có đồ thị như vầy:

Hỏi đáp Toán

Nhìn có "tròn" chút nào đâu? :D

B thuộc d nên B(2y-2;y)

C thuộc d nên C(x;0,5x+1)

vecto BA=(2y-2;y-2)

vecto BC=(x-2y;0,5x+1-y)

Theo đề, ta có: (2y-2)(x-2y)+(y-2)(0,5x+1-y)=0 và 2y-2=2x-4y và y-2=2(0,5x+1-y)

=>2y-2x=-2 và y-2=x+2-2y

=>-x+y=-1 và x+2-2y-y+2=0

=>x-y=1 và x-3y=-4

=>x=3,5 và y=2,5 và (2y-2)(x-2y)+(y-2)(0,5x+1-y)=0

=>\(\left(x,y\right)\in\varnothing\)

 

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Bài 1:

Gọi biểu thức trên là $P$
\(P=\frac{\sqrt{x}(\sqrt{x}-3)+3(\sqrt{x}+3)}{(\sqrt{x}+3)(\sqrt{x}-3)}.\frac{x-9}{\sqrt{x}-3}\)

\(=\frac{x+9}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{\sqrt{x}-3}=\frac{x+9}{\sqrt{x}-3}\)

 

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Bài 2:
Để $(d)$ và $(d')$ song song với nhau thì:
$m^2-3=2m$

$\Leftrightarrow m^2-2m-3=0$

$\Leftrightarrow (m+1)(m-3)=0$

$\Leftrightarrow m+1=0$ hoặc $m-3=0$

$\Leftrightarrow m=-1$ hoặc $m=3$

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Câu 1)

Gọi PT đường thẳng $MK$ là \((\Delta):y=ax+b\)

\((\Delta)\perp (d)\Rightarrow a(-2)=-1\Rightarrow a=\frac{1}{2}\)

Mặt khác \(M(3,3)\in (\Delta)\Rightarrow 3=\frac{3}{2}+b\Rightarrow b=\frac{3}{2}\Rightarrow (\Delta):y=\frac{x}{2}+\frac{3}{2}\)

Gọi tọa độ của $K=(m,n)$. Vì \(K\in (\Delta),(d)\) nên \(\left\{\begin{matrix} n=\frac{m}{2}+\frac{3}{2}\\ n=-2m+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m=1\\ n=2\end{matrix}\right.\Rightarrow K(1,2)\)

Từ đkđb có $K$ là trung điểm của $MP$. Do đó:

\(\left\{\begin{matrix} m=1=\frac{3+x_P}{2}\\ n=2=\frac{3+y_P}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_P=-1\\ y_P=1\end{matrix}\right.\Rightarrow P(-1,1)\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Câu 2:

a) Ta có \(\left\{\begin{matrix} (d):y=\frac{x}{2}-2\\ (d'):y=\frac{-3x}{2}+4\end{matrix}\right.\Rightarrow \) phương trình hoành độ giao điểm là:

\(\frac{x}{2}-2=\frac{-3x}{2}+4(1)\Leftrightarrow x=3\Rightarrow y=\frac{-1}{2}\)

Rõ ràng PT $(1)$ có nghiệm nên hai đường thẳng cắt nhau tại \(M(3,\frac{-1}{2})\)

b) Gọi PT đường thẳng cần tìm là $y=ax+b$

Vì đường thẳng đó vuông góc với $(d)$ nên \(\frac{a}{2}=-1\Rightarrow a=-2\)

Do $M$ thuộc đường thẳng đó nên \(-\frac{1}{2}=3(-2)+b\Rightarrow b=\frac{11}{2}\)

\(\Rightarrow \text{PTĐT}:y=-2x+\frac{11}{2}\)

1. Trg mp Oxy, cho đt d: x - y + 4 = 0. Hỏi trg các đt sau đt nào có thể biến thành d qua 1 phép đối xứng tâm? a. 2x + y - 4 = 0 b. x + y - 1 = 0 c. 2x - 2y + 1 = 0 d. 2x + 2y - 3 = 0 2. Cho 2 đt (C): \(x^2+y^2=1\) và (C'): \(\left(x-4\right)^2+\left(y-2\right)^2=1\). Tìm tọa độ tâm đối xứng biến (C) thành (C') 3. Trg mp Oxy cho điểm M (2;1). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối...
Đọc tiếp

1. Trg mp Oxy, cho đt d: x - y + 4 = 0. Hỏi trg các đt sau đt nào có thể biến thành d qua 1 phép đối xứng tâm?

a. 2x + y - 4 = 0 b. x + y - 1 = 0 c. 2x - 2y + 1 = 0 d. 2x + 2y - 3 = 0

2. Cho 2 đt (C): \(x^2+y^2=1\) và (C'): \(\left(x-4\right)^2+\left(y-2\right)^2=1\). Tìm tọa độ tâm đối xứng biến (C) thành (C')

3. Trg mp Oxy cho điểm M (2;1). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến the \(\overrightarrow{v}=\left(2;3\right)\) biến điểm M thành điểm nào trg các điểm sau?

a. (1;3) b. (2;0) c. (0;2) d. (4;4)

4. Trg mp Oxy cho đt d có pt: x + y - 2 = 0. Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(3;2\right)\) biến đt d thành đt nà trg các đt sau?

a. 3x + 3y - 2 = 0 b. x - y + 2 = 0 c. x + y + 2 = 0 d. x + y - 3 = 0

5. Trg mp Oxy cho đt (C) có pt: \(\left(x-1\right)^2+\left(y+2\right)^2=4\). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối cứng qua tâm O và phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(2;3\right)\) biến (C) thành đt nào trg các đt có pt sau?

a. \(x^2+y^2=4\) b. \(\left(x-2\right)^2+\left(y-6\right)^2=4\) c. \(\left(x-2\right)^2+\left(x-3\right)^2=4\) d. Đáp án khác

0
AH
Akai Haruma
Giáo viên
15 tháng 1 2017

Lời giải:

1. Gọi đường thẳng cần tìm có dạng \((d):y=ax+b\)

\(I(3;1)\in (d)\Rightarrow 1=3a+b\Rightarrow b=1-3a\Rightarrow y=ax+1-3a\)

Xét \((d)\cap Ox\equiv C\Rightarrow \left\{\begin{matrix} y_C=0\\ x_c=\frac{3a-1}{a}\end{matrix}\right.\)

Xét \((d)\cap Oy\equiv D\Rightarrow \left\{\begin{matrix} x_D=0\\ y_D=1-3a\end{matrix}\right.\)

Mặt khác \(CE=DE\Rightarrow \left ( \frac{3a-1}{a}-2 \right )^2+4=4+(1-3a+2)^2\)

\(\Leftrightarrow a\in \left \{ \frac{-1}{3};\frac{1}{3};1 \right \}\) \(\Rightarrow \left[ \begin{array}{ll} y=\frac{x}{3} \\ y=\frac{-x}{3}+2 \\ y=x-2 \end{array} \right.\).

Vì $D\neq E$ nên \(\left[ \begin{array}{ll} y=\frac{-x}{3}+2 \\ y=x-2 \end{array} \right.\). Đây chính là hai phương trình đường thẳng cần tìm.

2) Gọi đường thẳng cần tìm có tên là $(d')$

Vì $(d')$ đối xứng với $(d)$ qua một điểm nên \((d)\parallel (d')\Rightarrow (d'): x-2y+t=0\)

Với $M$ là một điểm trên $(d)$, chọn $M(7;1)$. Khi đó $M'\in (d')$ phải đối xứng với $M$ qua $A$, tức là $A$ là trung điểm của $MM'$

\(\Rightarrow \left\{\begin{matrix} 2=x_A=\frac{x_M+x_{M'}}{2}=\frac{7+x_{M'}}{2}\\ 1=y_A=\frac{y_M+y_{M'}}{2}=\frac{1+y_{M'}}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_{M'}=-3\\ y_{M'}=1\end{matrix}\right.\)

Vì $M'\in (d')$ nên \(-3-2+c=0\Rightarrow c=5\Rightarrow (d'):2x-y+5=0\)