CMR: 1/102+ 1/112+...+1/20132+ 1/20142 <9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SSH:(20152-12):10+1=2015
(12-22)+(32-42)+(52-62)+...+(20132-20142)+20152
-10+(-10)+(-10)+...+(-10)+20152
-10x(2015-1):2+20152=12
=> C=12
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Bạn xem cách làm tại đây nhé!
\(A=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(A>\left(\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\)
=> \(A>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Lại có: \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)=\frac{100}{100}=1\)
=> \(\frac{7}{12}< A< 1\)
đặt tổng trên là A
ta co:
1/10^2<1/9.10
1/11^2<1/10.11
........
1/2014^2
=>A<1/9.10+1/10.11+.......+1/2013.2014=1/9-1/2014<1/9<9(đpcm)