K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC vuông tại A có 

\(AC=\dfrac{1}{2}BC\)

nên \(\widehat{B}=30^0\)

\(\Leftrightarrow\widehat{C}=60^0\)

Ta có: ΔABC vuông tại A

mà \(AC=\dfrac{1}{2}BC\)

nên \(\widehat{B}=30^0\)

\(\sin\widehat{B}=\dfrac{1}{2}\)

\(\cos\widehat{B}=\dfrac{\sqrt{3}}{2}\)

\(\tan\widehat{B}=\dfrac{\sqrt{3}}{3}\)

\(\cot\widehat{B}=\sqrt{3}\)

18 tháng 3 2021

a/ Ta có: \(\Delta\) ABC cân tại A=> AB=AC

mà AC=10cm => AB=10cm

Ta có: AH là đường cao \(\Delta\) ABC => \(\Delta\) ABH vuông tại H

=> \(AH^2+BH^2=AB^2\) ( định lý Pytago)

dựa vào số liệu đầu bài và số liệu đã tính => BH=6cm

Ta có \(\Delta\) ABC cân, AH là đường cao => AH cũng là trung tuyến => H trung điểm BC

=> BH=CH=6cm

b/ Ta có: \(\Delta\) KAH vuông tại K => \(A_1+H_1=90^0=>H_1=90^o-A_1\left(1\right)\)

Ta có: \(\Delta\) ADH vuông tại D => \(A_2+H_2=90^o=>H_2=90^o-A_2\left(2\right)\)

Ta có: \(A_1=A_2\left(t.gABC\right)cân,AHlàđườngcaovàcũngsẽlàphângiác\left(\right)\) (3)

từ \(\left(1\right)\left(2\right)và\left(3\right)\) => \(H_1=H_2\)

Xét \(\Delta\) AKH và \(\Delta\) ADH có: \(\left\{{}\begin{matrix}A_1=A_2\\AHchung\\H_1=H_2\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta\) AKH=\(\Delta\) ADH(g.c.g)

=> AK=AD

1 tháng 8 2023

A B C H I

a/

\(BC=\sqrt{AB^2+AC^2}\) (Pitago)

\(\Rightarrow BC=\sqrt{10^2+15^2}=\sqrt{325}=5\sqrt{13}\)

\(AB^2=HB.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{10^2}{5\sqrt{13}}=\dfrac{20\sqrt{13}}{13}\)

\(HC=BC-HB=5\sqrt{13}-\dfrac{20\sqrt{13}}{13}\)

\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

Bạn tự thay số tính nốt nhé vì số hơi lẻ

b/

Áp dụng tính chất đường phân giác trong tg: đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của hai đoạn thẳng ấy

\(\Rightarrow\dfrac{IA}{IC}=\dfrac{AB}{BC}=\dfrac{10}{5\sqrt{13}}=\dfrac{2\sqrt{13}}{13}\)

Mà \(IA+IC=AC=15\) Từ đó tính được IA và IC

Xét tg vuông ABI có

\(BI=\sqrt{AB^2+IA^2}\) (pitago)

Bạn tự thay số tính nhé

 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=9\cdot25=225\\AC^2=16\cdot25=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\)

\(\Leftrightarrow\widehat{C}\simeq37^0\)

\(\Leftrightarrow\widehat{B}=53^0\)

19 tháng 4 2021

A B C H 6 8

a, Xét tam giác HBA và tam giác ABC ta có : 

^AHB = ^BAC = 900

^B _ chung 

Vậy tam giác HBA ~ tam giác ABC ( g.g )

b, Xét tam giác ABC vuông tại A, AH là đường cao 

Áp dụng định lí Pytago cho tam giác ABC : 

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm 

Vì tam giác HBA ~ tam giác ABC ( cma )

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)( tỉ số đồng dạng ) 

\(\Rightarrow\frac{AH}{8}=\frac{6}{10}\Rightarrow AH=\frac{48}{10}=\frac{24}{5}\)cm 

18 tháng 9 2021

\(a,BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\left(pytago\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot CH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\\CH=\dfrac{AC^2}{BC}=9,6\left(cm\right)\\AH=\sqrt{5,4\cdot9,6}=51,84\left(cm\right)\end{matrix}\right.\)

\(b,\sin B=\cos C=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos B=\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \tan B=\cot C=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot B=\tan C=\dfrac{AB}{AC}=\dfrac{3}{4}\)

a: Xét ΔBAH vuông tại H và ΔACH vuông tại H có

góc BAH=góc ACH

=>ΔHBA đồng dạg với ΔHAC
b: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC

=>HA^2=HB*HC

c: BC=căn 6^2+8^2=10cm

Xét ΔBAH vuông tại H và ΔBCA vuông tại A có

góc B chung

=>ΔBAH đồng dạng với ΔBCA

=>S BAH/S BCA=(BA/BC)^2=9/25