Cho hình bình hành ABCD. Trên cạnh CD và BC lấy M, N sao cho BM = DN. Gọi I là giao điểm của BM và DN. CMR: IA là tia phân giác của DIB.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
16 tháng 7 2019
Gọi khoảng cách từ A đến BM,DN lần lượt là h và k. Kẻ MH vuông góc AB.
Ta có \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\). Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)
Do đó \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\). Mà BM = DN nên \(h=k\)
Suy ra khoảng cách từ A đến 2 đường thẳng BM,DN là bằng nhau; BM cắt DN tại I
Vậy thì A nằm trên phân giác của ^DIB hay IA là phân giác góc DIB (đpcm).
2 tháng 7 2019
https://hoccungvuvi.blogspot.com/2019/07/hinh-hoc-nang-cao-lop-8-danh-cho-hoc.html
8 tháng 12 2021
1:
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
Suy ra: BM//DN
Gọi khoảng cách từ A đến BM,ND lần lượt là h và k. Kẻ MH vuông góc AB
Ta có : \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\)
Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)
Do đó : \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\)
Mà BM=DN nên h=k
Suy ra khoảng cách từ A đến hai đường thẳng BM,DN là bằng nhau; BM cắt DN tại I
Vậy thì A nằm trên phân giác của \(\widehat{DIB}\) hay IA là phân giác của góc DIB ( đpcm )