Cho tam giácABC có AB=3cm, BC=7cm, CA=5cmvà tam giác MNP ĐỒNG DẠNG tam giác ABC. Tính các cạnh của tam giác MNP biết: a) cạnh lớn nhất là 14cm. b) độ dài đoạn MN bé hơn đoạn AB 1,5cm. c) chu vi tam giác MNP là 24cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABC đồng dạng với ΔMNP
=>\(\dfrac{AB}{MN}=\dfrac{BC}{NP}=\dfrac{AC}{MP}\)
ΔABC đồng dạng với ΔMNP
=>Độ dài cạnh nhỏ nhất của ΔMNP sẽ là độ dài tương ứng với cạnh nhỏ nhất của ΔABC
mà cạnh nhỏ nhất của ΔABC là AB và cạnh tương ứng của AB trong ΔMNP là MN
nên MN=2,5cm
=>\(\dfrac{5}{2,5}=\dfrac{12}{MP}=\dfrac{13}{NP}\)
=>\(\dfrac{12}{MP}=\dfrac{13}{NP}=2\)
=>MP=12/2=6(cm); NP=13/2=6,5(cm)
Suy ra: tam giác ABC vuông tại A.
Diện tích tam giác ABC là:
*Gọi tam giác ABC đồng dạng với tam giác MNP theo tỉ số k
Suy ra:
Thay số
Chọn đáp án B
B4: Cho tam giác ABC = tam giác MNP. Biết AB+BC=7cm;MN-NP=3cm;MP=4cm. Tính các cạnh của hai tam giác
AB/MN=BC/NP=CA/PM=(AB+BC+CA)/(MN+NP+PM)=(2+3+4)/36=1/4
=> AB/MN=2/MN=1/4=> MN=8
Tương tự tính ra NP và PM
Tính chu vi của tam giác ABC là:9cm
Lấy chu vi tam giác MNP/tam giác ABC là: 36/9=4cm
=>MN=4.2=8(cm)
NP=4.3=12(cm)
MP=4.4=16(cm)
Tam giác A'B'C' đồng dạng với tam giác ABC có cạnh nhỏ nhất bằng 4,5 nên cạnh nhỏ nhất của △ A'B'C' tương ứng với cạnh AB nhỏ nhất của △ ABC
Giả sử A'B' là cạnh nhỏ nhất 'của Δ A'B'C'
Vì △ A'B'C' đồng dạng △ ABC nên
Thay AB = 3(cm), AC = 7(cm), BC = 5(cm), A'B' = 4,5(cm) vào (1) ta có:
Vậy: