Cho a,b.c thuộc N* thỏa mãn :a^b=b^c=c^a .Tính giá trụ biểu thức: M=(a/b)^2016-(c/a)^2017
giúp mk với :>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab=bc=ca\Rightarrow\frac{ab}{abc}=\frac{bc}{abc}=\frac{ca}{abc}\)
\(\Rightarrow\frac{1}{c}=\frac{1}{a}=\frac{1}{b}\Rightarrow a=b=c\)
\(\Rightarrow M=\left(\frac{a}{b}\right)^{2016}-\left(\frac{c}{a}\right)^{2017}\)
\(=\left(\frac{a}{a}\right)^{2016}-\left(\frac{a}{a}\right)^{2017}\)
\(=1^{2016}-1^{2017}\)
\(=1-1=0\)
Lời giải:
Theo bài ra ta có:
$\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}=k$
$\Rightarrow a+b=3k; b+c=4k; c+a=5k$
$\Rightarrow a+b+c=(3k+4k+5k):2=6k$
$\Rightarrow a=(a+b+c)-(b+c)=2k; b=(a+b+c)-(a+c)=6k-5k=k; c=(a+b+c)-(a+b)=6k-3k=3k$
$\Rightarrow M=16a-2b-10c-2017=16.2k - 2.k-10.3k-2017=0k-2017=-2017$
Giải
Ta có: \(a^b=b^c=c^a\)
\(\Leftrightarrow a=b=c\)
\(\Leftrightarrow M=1^{2016}-1^{2017}\)
\(\Leftrightarrow M=1-1\)
\(\Leftrightarrow M=0\)