K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

Đáp án cần chọn là: D

Từ B kẻ BH vuông góc với CD.

Tứ giác ABHD là hình thang có hai cạnh bên AD // BH nên AD = BH, AB = DH.

Mặt khác, AB = AD = 2cm nên suy ra BH = DH = 2cm.

Do đó: HC = DC – HD = 4 – 2 = 2cm.

Tam giác BHC có BH = HC = 2cm nên tam giác BHC cân đỉnh H.

Lại có B H C ^ = 90 °  (do BH CD) nên tam giác BHC vuông cân tại H.

Do đó  B C H ^ = 180 ° - B H C ^ ÷ 2 = 180 ° - 90 ° ÷ 2 = 45 °

Xét hình thang ABCD có:

A B C ^ = 360 ° - A ^ + D ^ + C ^ = 360 ° - 90 ° + 90 ° + 45 ° = 135 °

Vậy A B C ^ = 135 ° .

13 tháng 10 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Kẻ BH ⊥ CD

Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có  ∠ A =  ∠ D = 90 0  )

Suy ra: BH // AD

Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD

AB = AD = 2cm (gt)

⇒ BH = HD = 2cm

CH = CD – HD = 4 – 2 = 2 (cm)

Suy ra: ∆ BHC vuông cân tại H

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇒  ∠ C =  45 0

∠ B +  ∠ C = 180 0  (2 góc trong cùng phía bù nhau) ⇒  ∠ B =  180 0  –  45 0  =  135 0

10 tháng 8 2016

diện tích hình thang = (đáy lớn + đáy bé)chiều cao : 2 = (2+4)x2:2= 6 cm^2

10 tháng 8 2016

\(\frac{1}{2}\)x2(2+4)=6(cm^2(

Đáp án: 

`hat{ABC} = 135^0`

`hat{C} = 45^0`

Giải thích các bước giải:

– Kẻ `OH ⊥ DC = {H}` 

– Xét tứ giác `ABHD` có: 

`AD = AB` 

`hat{A} = hat{D} = 90^0`

`=> ABHD` là hình vuông

`=>` {DH=HC=2(cm)AD=BH=2(cm) 

Xét `ΔBHC` vuông cân tại `H` có: 

`hat {HBC} = hat{C} = 45^0` 

`=> hat{ABC} = hat{HBC} + hat{ABH} = 45^0 + 90^0 = 135^0`

Kẻ BH ⊥ CD

Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có ∠∠A = ∠∠D = 900900 )

Suy ra: BH // AD

Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD

AB = AD = 2cm (gt)

⇒ BH = HD = 2cm

CH = CD – HD = 4 – 2 = 2 (cm)

Suy ra: Δ∆BHC vuông cân tại H

⇒ ∠∠C = 450450

∠∠B + ∠∠C = 18001800 (2 góc trong cùng phía bù nhau) ⇒ ∠∠B = 18001800 – 450450 = 1350