Bài 8: cho hình thang vuông ABCD có góc A = góc D = 90o . AB = AD = 2cm, DC = 4cm. Tính hai góc còn lại của hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án cần chọn là: D
Từ B kẻ BH vuông góc với CD.
Tứ giác ABHD là hình thang có hai cạnh bên AD // BH nên AD = BH, AB = DH.
Mặt khác, AB = AD = 2cm nên suy ra BH = DH = 2cm.
Do đó: HC = DC – HD = 4 – 2 = 2cm.
Tam giác BHC có BH = HC = 2cm nên tam giác BHC cân đỉnh H.
Lại có B H C ^ = 90 ° (do BH ⊥ CD) nên tam giác BHC vuông cân tại H.
Do đó B C H ^ = 180 ° - B H C ^ ÷ 2 = 180 ° - 90 ° ÷ 2 = 45 °
Xét hình thang ABCD có:
A B C ^ = 360 ° - A ^ + D ^ + C ^ = 360 ° - 90 ° + 90 ° + 45 ° = 135 °
Vậy A B C ^ = 135 ° .
Kẻ BH ⊥ CD
Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có ∠ A = ∠ D = 90 0 )
Suy ra: BH // AD
Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD
AB = AD = 2cm (gt)
⇒ BH = HD = 2cm
CH = CD – HD = 4 – 2 = 2 (cm)
Suy ra: ∆ BHC vuông cân tại H
⇒ ∠ C = 45 0
∠ B + ∠ C = 180 0 (2 góc trong cùng phía bù nhau) ⇒ ∠ B = 180 0 – 45 0 = 135 0
Đáp án:
`hat{ABC} = 135^0`
`hat{C} = 45^0`
Giải thích các bước giải:
– Kẻ `OH ⊥ DC = {H}`
– Xét tứ giác `ABHD` có:
`AD = AB`
`hat{A} = hat{D} = 90^0`
`=> ABHD` là hình vuông
`=>` {DH=HC=2(cm)AD=BH=2(cm)
Xét `ΔBHC` vuông cân tại `H` có:
`hat {HBC} = hat{C} = 45^0`
`=> hat{ABC} = hat{HBC} + hat{ABH} = 45^0 + 90^0 = 135^0`
Kẻ BH ⊥ CD
Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có ∠∠A = ∠∠D = 900900 )
Suy ra: BH // AD
Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD
AB = AD = 2cm (gt)
⇒ BH = HD = 2cm
CH = CD – HD = 4 – 2 = 2 (cm)
Suy ra: Δ∆BHC vuông cân tại H
⇒ ∠∠C = 450450
∠∠B + ∠∠C = 18001800 (2 góc trong cùng phía bù nhau) ⇒ ∠∠B = 18001800 – 450450 = 1350