K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD) 
-> Tam giác ADB và BCD đồng dạng 

=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1) 

Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago : 
BD^2+BC^2=CD^2 
hay BC^2+BD^2 =625 (2) 

Từ (1) và (2) ta giải hệ thì có BC, BD: 
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144) 
-> BD = can( (625+can( 387025))/2 ) 
-> BC = 3000/BD

Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD) 
-> Tam giác ADB và BCD đồng dạng 

=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1) 

Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago : 
BD^2+BC^2=CD^2 
hay BC^2+BD^2 =625 (2) 

Từ (1) và (2) ta giải hệ thì có BC, BD: 
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144) 
-> BD = can( (625+can( 387025))/2 ) 
-> BC = 3000/BD

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

30 tháng 9 2017

Áp dụng các hệ thức lượng trong tam giác vuông BDC cùng chú ý độ dài đường cao hạ từ B xuống CD bằng AD, ta tính được : AB = 9cm, BD =15cm, hoặc AB = 16cm, BC = 15cm, BD = 20cm

30 tháng 4 2018

Kẻ BE ⊥ CD tại E

Suy ra tứ giác ABED là hình chữ nhật (vì A ^ = D ^ = E ^ = 90 ∘ ) nên BE = AD = 12cm

Đặt EC = x (0 < x < 25) thì DE = 25 – x

Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông BCD ta có:

B E 2 = E D . E C ⇔ x ( 25 - x ) = 144 ⇔ x 2 - 25 x + 144 = 0

  x 2 - 16 x - 9 x + 144 = 0 <=> x(x – 16) – 9(x – 16) = 0 <=> (x – 16)(x – 9) = 0

⇔ x = 16 x = 9 (thỏa mãn)

Với EC = 16, theo định lý Pytago ta có BC = B E 2 + E C 2 = 12 2 + 16 2 = 20  (loại)

Với EC = 9, theo định lý Pytago ta có BC = B E 2 + E C 2 = 12 2 + 9 2 = 15  (nhận)

Vậy BC = 15cm

Đáp án cần chọn là: A

13 tháng 9 2018

đúng 0?

NV
20 tháng 7 2021

Kẻ BE vuông góc CD \(\Rightarrow ABED\) là hcn (tứ giác 4 góc vuông) \(\Rightarrow AB=DE\)

Đặt \(AB=x>0\) 

Áp dụng định lý Pitago cho tam giác vuông ABD:

\(AB^2+AD^2=BD^2\Leftrightarrow BD^2=x^2+144\) (1)

Áp dụng hệ thức lượng cho tam giác vuông BDC:

\(BD^2=DE.DC\Leftrightarrow BD^2=25x\) (2)

(1);(2) \(\Rightarrow x^2+144=25x\Rightarrow x^2-25x+144=0\Rightarrow\left[{}\begin{matrix}x=16\\x=9\end{matrix}\right.\)

- Với \(AB=16\left(cm\right)\Rightarrow BD=\sqrt{AD^2+AB^2}=20\left(cm\right)\)

\(BC=\sqrt{DC^2-BD^2}=15\left(cm\right)\)

- Với \(AB=9\left(cm\right)\Rightarrow BD=\sqrt{AD^2+AB^2}=15\left(cm\right)\)

\(BC=\sqrt{DC^2-BD^2}=20\left(cm\right)\)

NV
20 tháng 7 2021

undefined

Kẻ đường cao BH

Xét tứ giác ABHD có 

\(\widehat{BAD}=90^0\)

\(\widehat{ADH}=90^0\)

\(\widehat{BHD}=90^0\)

Do đó: ABHD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow AB^2+12^2=BD^2\)(1)

Ta có: ABHD là hình chữ nhật(cmt)

nên AD=BH(hai cạnh đối)

mà AD=12cm(gt)

nên BH=12cm

Áp dụng định lí Pytago vào ΔBDC vuông tại B, ta được:

\(DC^2=BD^2+BC^2\)

\(\Leftrightarrow BD^2+BC^2=25^2=625\)(2)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có BH là đường cao ứng với cạnh huyền DC, ta được:

\(BD\cdot BC=BH\cdot DC\)

\(\Leftrightarrow BD\cdot BC=12\cdot25=300\)

hay \(BC=\dfrac{300}{BD}\)(3)

Thay (3) vào (2), ta được:

\(BD^2+\left(\dfrac{300}{BD}\right)^2=625\)

\(\Leftrightarrow\dfrac{BD^4+90000}{BD^2}=625\)

\(\Leftrightarrow BD^4-625BD^2+90000=0\)

\(\Leftrightarrow BD^4-400BD^2-225BD^2+90000=0\)

\(\Leftrightarrow\left(BD^2-400\right)\left(BD^2-225\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}BD=15\\BD=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}AB=9\left(cm\right)\\AB=16\left(cm\right)\end{matrix}\right.\)

Diện tích hình thang ABCD là:

\(S_{ABCD}=\dfrac{AB+CD}{2}\cdot AD=\left[{}\begin{matrix}\dfrac{9+25}{2}\cdot12=204\left(cm^2\right)\\\dfrac{9+16}{2}\cdot12=150\left(cm^2\right)\end{matrix}\right.\)

3 tháng 7 2021

từ B hạ BE\(\perp DC\)

theo bài ra ABCD là hình thang \(=>AB//CD=>AB//DE\)

mà \(\angle\left(A\right)=\angle\left(D\right)=90^o\)=>chứng minh được ABED là hình chữ nhật

\(=>AD=BE=12cm\)

áp dụng hệ thức lượng \(=>BE^2=DE.EC< =>12^2=DE\left(25-DE\right)=>DE=16cm=AB\)

\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)BE}{2}=\dfrac{\left(16+25\right)12}{2}=246cm^2\)