OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Mini game 20/11 tri ân thầy cô, nhận thưởng hấp dẫn - Tham gia ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TÌM x \(\inℕ\)
\(\frac{6x+7y}{7x+9y}=\frac{58}{71}\)
VỚI x, y LÀ HAI SỐ NGUYÊN TỐ CÙNG NHAU
hâm mọ momoland
Vì \(\frac{6x+7y}{7x+9y}\)=\(\frac{58}{71}\)\(\Rightarrow\)\(\left(6x+7y\right)\times71=\left(7x+9y\right)\times58\)
\(\Rightarrow\)\(426x+497y=406x+522y\)\(\Rightarrow\)\(\left(426x+497y\right)-\left(406x+522y\right)=0\)\(\Rightarrow\)\(426x+497y-406x-522y=0\)\(\Rightarrow\)\(\left(426x-406x\right)+\left(497y-522y\right)=0\)\(\Rightarrow\)\(20x+\left(-25\right)y=0\)\(\Rightarrow\)\(20x-25y=0\)\(\Rightarrow\)\(20x=25y\)\(\Rightarrow\)\(x=\frac{5}{4}\times y\)
\(\Rightarrow\)\(x=\frac{5y}{4}\)
Để x là số tự nhiên => 5y phải chia hết cho 4 , mà (5,4) = 1 => y chia hết cho 4 => Đặt y = 4K ( \(k\inℕ\))
Vậy \(\hept{\begin{cases}x=\frac{5y}{4}\\y=4k\left(k\inℕ\right)\end{cases}}\)
Tìm x ,y là 2 số nguyên tố cùng nhau và \(\frac{6x+7y}{7x+9y}=\frac{59}{73}\)
không có hai số nguyên tố cùng nhau nên x,y ko tồn tại
Cho x,y là 2 số nguyên tố cùng nhau thỏa mãn: 6x+7y/7x+9y=59/73. Vậy x=? y=?
Tìm x, y thuộc N sao cho 6x+7y phần 7x+9y=59 phần 73 với x, y là số nguyên tố cùng nhau
3)cho a,b là các số khác 0 thỏa mãn a+b=4 (a-b).Khi đó a/b ...
(nhập kế quả dạng phân số tối giản)
4)Kí hiệu n! là tích n số tự nhiên liên tiếp bắt đầu từ 1. Số chữ số 0 tận cùng của 20! là...
5)cho x,y là hai số nguyên tố cùng nhau và 6x+7y/7x+9y=59/73 . Trả lời x=....;y=.....
(nhập các giá trị theo thứ tự vào các ô phía dưới)
4. 4 chữ số 0
Cho \(x,y,z\inℕ\)nguyên tố cùng nhau thỏa mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\). Hỏi x + y có là số chính phương không? Vì sao?
tìm cặp số y,x biết
\(\frac{1+5y}{24}=\frac{1+7y}{7x}=\frac{1+9y}{2x}\)
Tìm cặp x,y
1.a,Tìm stn n để 9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
b,Tìm số nguyên tố n sao cho n+2 và n+4 đều là số nguyên tố
2.a,Chứng minh với mọi số nguyên x,y nếu:6x+11y chia hết cho 31 thì x+7y chia hết cho 31
b,Chứng minh rằng với mọi STN n khác 0 thì 2n+1 và n(n+1)là 2 số nguyên tố cùng nhau
MNG IUPS EM VS Ạ :))
Tìm các cặp x,y
a,\(\frac{x}{5}=\frac{y}{9}vàxy=405\)
b,\(\frac{1+5y}{24}=\frac{1+7y}{7x}=\frac{1+9y}{2x}\)
hâm mọ momoland
Vì \(\frac{6x+7y}{7x+9y}\)=\(\frac{58}{71}\)\(\Rightarrow\)\(\left(6x+7y\right)\times71=\left(7x+9y\right)\times58\)
\(\Rightarrow\)\(426x+497y=406x+522y\)\(\Rightarrow\)\(\left(426x+497y\right)-\left(406x+522y\right)=0\)\(\Rightarrow\)\(426x+497y-406x-522y=0\)\(\Rightarrow\)\(\left(426x-406x\right)+\left(497y-522y\right)=0\)\(\Rightarrow\)\(20x+\left(-25\right)y=0\)\(\Rightarrow\)\(20x-25y=0\)\(\Rightarrow\)\(20x=25y\)\(\Rightarrow\)\(x=\frac{5}{4}\times y\)
\(\Rightarrow\)\(x=\frac{5y}{4}\)
Để x là số tự nhiên => 5y phải chia hết cho 4 , mà (5,4) = 1 => y chia hết cho 4 => Đặt y = 4K ( \(k\inℕ\))
Vậy \(\hept{\begin{cases}x=\frac{5y}{4}\\y=4k\left(k\inℕ\right)\end{cases}}\)