Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+7y}{7x}=\frac{1+9y}{2x}\) \(\Leftrightarrow\frac{1+7y}{7}=\frac{1+9y}{2}\)
\(\Leftrightarrow\left(1+7y\right)2=7\left(1+9y\right)\)
\(\Leftrightarrow2+14y=7+63y\)
\(\Leftrightarrow63y-14y=2-7\)
\(\Leftrightarrow y=-\frac{5}{49}\)
Thay \(x=-\frac{5}{49}\) vào biểu thức ta có :
\(\frac{1+7.\frac{-5}{49}}{7.x}=\frac{1+9.\frac{-5}{49}}{2x}\)
\(\Leftrightarrow x=2\)
Vậy..
Lời giải:
Ta có:
\(\frac{1+7y}{7x}=\frac{1+9y}{2x}\Rightarrow \frac{1+7y}{7}=\frac{1+9y}{2}\)
\(\Rightarrow 2(1+7y)=7(1+9y)\)
\(\Leftrightarrow 49y+5=0\Rightarrow y=\frac{-5}{49}\). Thay giá trị trên của $y$ vào điều kiện ban đầu ta có:
\(\frac{1+5y}{24}=\frac{1+9y}{2x}\)
\(\Leftrightarrow \frac{1+5.\frac{-5}{49}}{24}=\frac{1+9.\frac{-5}{49}}{2x}\)
\(\Leftrightarrow x=4\)
Vậy \(x=4; y=\frac{-5}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+7y-1-5y}{4x-5x}=\frac{2y}{-x}=\frac{1+5y-1-3y}{5x-12}=\frac{2y}{5x-12}\)
=>\(\frac{2y}{-x}=\frac{2y}{5x-12}\) với y=0 thay vào không thỏa mãn
Nếu y khác 0
=>-x=5x-12
=>x=2. Thay x=2 vào trên ta được:
\(\frac{1+3y}{12}=\frac{2y}{-2}=-y=>1+3y=>1=-15y=>y=\frac{-1}{15}\)
Vậy x=2,y=\(\frac{-1}{15}\) thỏa mãn đề bài