chungwsminh rằng số B=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{210}\) ko phải số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Mai Anh - Toán lớp 6 - Học toán với OnlineMath:bạn tham khảo nhé.chỉ khác ở chỗ 45 với 2019 thôi !
Ta thấy :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(.........................\)
\(\frac{1}{2019^2}< \frac{1}{2018.2019}\)
\(\Leftrightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)
\(\Leftrightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2019}=\frac{2018}{2019}\)
Mà \(0< B< 1\)nên \(B\)không phải là số tự nhiên
~ Hok tốt ~
Ta có: \(\frac{1}{2^2}>0\)
\(\frac{1}{3^2}>0\)
................
\(\frac{1}{100^2}>0\)
\(\Rightarrow A>0\left(1\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< A< 1\)
Vậy A ko là STN.
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\)
Vậy A không phải là một số tự nhiên