K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

tự vẽ hình nhé!

2) \(\Delta AEB=\Delta ADC\left(c.g.c\right)\)

=> \(\widehat{ABE}=\widehat{ACD}\)(2 góc2 t/ứ)

Mà \(\widehat{ABE}+\widehat{EBD}=180^o\)(kề bù)

\(\widehat{ACD}+\widehat{DCE}=180^o\)(kề bù)

Nên \(\widehat{EBD}=\widehat{DCE}\)

\(\Delta BKD=\Delta CKE\left(g.c.g\right)\)(đpcm)

3) \(\Delta BKD=\Delta CKE\)(câu 2) => KD = KE (2 cạnh t/ứ)

\(\Delta AKE=\Delta AKD\left(c.c.c\right)\)\(\Rightarrow\widehat{EAK}=\widehat{DAK}\)(2 góc t/ứ)

=> AK là p/g \(\widehat{BAC}\left(đpcm\right)\)

4) Có: KE = KD (\(\Delta CKE=\Delta BKD\))

=> K cách đều E và D

=> K nằm trên đường trung trực của ED  (2)

Cần c/m \(AM⊥BC;AN⊥ED\)

Mà BC // ED (tự c/m) => A,M,N thẳng hàng  (3)

Có N nằm trên đường trung trực của ED  (4)

Từ (2);(3);(4) => A,M,K,N thẳng hàng (đpcm)

7 tháng 3 2017

AI GIÚP MIK DZỚI

26 tháng 2 2018

a) xét \(\Delta\)ABH và\(\Delta\)AHC có:AH chung. BH=HC.AB=AC=>bằng nhau ccc=>góc AHC =góc AHB

mà AHB + AHC =180 độ => góc AHB=AHC=90độ (đpcm)

b)ta thấy góc ABC+CBD=180độ;góc ACB+BCE=180độ=>góc CBD=BCE(kề bù vs 2 góc băng nhau)

xét \(\Delta\)DBC và\(\Delta\)BCE có :BD=CE,góc CBD=BCE,BC chung =>góc D= E,góc DCB=DBC=>góc DBK=ECK(vì góc DBC=ECB)

xét \(\Delta\)DBK và EKC có góc D=E,BD=CE,góc DBK=ECK=>bằng nhau gcg

19 tháng 12 2018

a) Chứng minh rằng: BE=CD

Xét tam giác ADC và tam giác AEB, ta có

- AC = AB (đề bài cho)

- góc A chung

- AD = AB + BD, và AE = AC + CE. Mà AB = AC, BD = CE, nên AD = AE

==> tam giác ADC = tam giác AEB (cạnh - góc - cạnh)

==> BE = CD (đpcm)

2,3) mình có việc nên ko ghi ra bây giờ được

19 tháng 12 2018

A B C D E

Xét ∆ ABE và ∆ ACB có :

BE = CD ( theo hình vẽ )

\(\widehat{A}\)chung

AB = AC ( gt )

=> ∆ ABE = ∆ ACB ( c.g.c )

=> BE = CD ( 2 cạnh tương ứng )

K đặt ở đâu ta :3 ?

16 tháng 2 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Các tam giác cân ABC và ADC có chung góc ở đỉnh ∠A nên ∠B1 = ∠ADE. Mà hai góc này ở vị trí đồng vị nên suy ra BC // DE.

31 tháng 12 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+)Theo giả thiết ta có: AB = AC và BD = CE nên:

AB + BD = AC + CE hay AD = AE.

+) Xét ΔABE và ΔACD có:

AB = AC (gt)

∠A chung

AE = AD (chứng minh trên)

⇒ ΔABE = ΔACD (c.g.c)

⇒ BE = CD (2 cạnh tương ứng) (1)

và ∠ABE = ∠ACD (2 góc tương ứng) (2)

Tam giác ABC cân nên ∠B1 = ∠C1. (3)

Từ (2) và (3) ⇒ ∠ABE - ∠B1 = ∠ACD - ∠C1, tức là ∠B2 = ∠C2.

⇒ ΔBIC cân tại I ⇒ IB = IC. (4)

Từ (1) và (4) suy ra BE - IB = CD – IC, tức là IE = ID.

21 tháng 5 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xét ΔABM và ΔACM có:

AB = AC ( giả thiết)

BM = CM ( vì M là trung điểm BC )

AM chung

⇒ ΔABM = ΔACM (c.c.c)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180o

⇒ ∠AMB = ∠AMC = 90o hay AM ⊥ BC

Chứng minh tương tự ta có: IM ⊥ BC

⇒ A, I, M thẳng hàng (Qua 1 điểm ta kẻ được duy nhất 1 đường thẳng vuông góc với đường thẳng cho trước)

3 tháng 5 2019

12 tháng 2 2022

 như cc