So sánh A và B biết :
a> A = \(\frac{19^{30}+1}{19^{31}+1}\); B =\(\frac{19^{31}+1}{19^{32}+1}\)
b> A =\(\frac{2^{18}-1}{2^{19}-1}\) ; B =\(\frac{2^{19}-1}{2^{20}-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1930<1931
\(\left(\frac{5}{19}\right)^{31}< \left(\frac{5}{19}\right)^{32}\)
5=5
công vế theo vế ta có
\(19^{30}+\left(\frac{5}{19}\right)^{31}+5< 19^{31}+\left(\frac{5}{19}\right)^{32}+5\)
Vậy A<B
Xét B = \(\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+14}{19^{32}+5+14}=\frac{19^{31}.19}{19^{32}.19}=\frac{19\left(19^{30}+1\right)}{19\left(19^{31}+1\right)}=\frac{19^{30}+1}{19^{31}+1}< \frac{19^{30}+5}{19^{31}+5}=A\)Vậy A > B
\(A=\frac{19^{30}+5}{19^{31}+5}=>19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\left(1\right)\)
\(B=\frac{19^{31}+5}{19^{32}+5}=>19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\left(2\right)\)
từ (1) and (2)
=>19A>19B
=>A>B
Ta có:
19A=19^31+95/19^31+5
19A= (19^31+5)+90/19^31+5
19A=1+90/19^31+5
19B=19^32+95/19^32+5
19B=(19^32+5)+90/19^32+5
19B=1+90/19^32+5
Vì: 90/19^31+5>90/19^31+5 nên 19A>19B hay A>B
\(19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Ta thấy \(19A>19B\) nên A > B
Ta có \(A=\frac{19^{30}+5}{19^{31}+5}\)
Suy ra \(19A=\frac{19^{31}+95}{19^{31}+5}=\frac{19^{31}+5}{19^{31}+5}+\frac{90}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
Ta có \(B=\frac{19^{31}+5}{19^{32}+5}\)
Suy ra \(19B=\frac{19^{32}+95}{19^{32}+5}=\frac{19^{32}+5}{19^{32}+5}+\frac{90}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Vì \(19^{31}+5< 19^{32}+5\Rightarrow\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\Rightarrow1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\)
Do đó \(19A>19B\Rightarrow A>B\)
Vậy A > B
Ta có: \(A=\frac{19^{30}+5}{19^{31}+5}\Rightarrow19A=\frac{19.\left(19^{30}+5\right)}{19^{31}+5}=\frac{19^{31}+95}{19^{31}+5}=\frac{19^{31}+5+90}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(B=\frac{19^{31}+5}{19^{32}+5}\Rightarrow19B=\frac{19.\left(19^{31}+5\right)}{19^{32}+5}=\frac{19^{32}+95}{19^{32}+5}=\frac{19^{32}+5+90}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Nên \(19A< 19B\Rightarrow A< B\)
Nhầm: Vì \(\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\Rightarrow1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\Rightarrow A>B\)
a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)
b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)
\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)
Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
c, Câu hỏi của truong nguyen kim
a , \(A=\frac{19^{30}+1}{19^{31}+1}\Rightarrow19A=\frac{19^{31}+19}{19^{31}+1}=\frac{19^{31}+1+18}{19^{31}+1}=1+\frac{18}{19^{31}+1}\)
\(B=\frac{19^{31}+1}{19^{32}+1}\Rightarrow19B=\frac{19^{32}+19}{19^{32}+1}=\frac{19^{32}+1+18}{19^{32}+1}=1+\frac{18}{19^{32}+1}\)
Vì \(19A< 19B\Leftrightarrow A< B\)
b, câu b tương tự nha
sửa lại chút nha :
do : \(\frac{18}{19^{31}+1}>\frac{18}{19^{32}+1}\Rightarrow1+\frac{18}{19^{31}+1}>1+\frac{18}{19^{32}+1}\)
\(\Rightarrow19A< 19B\Leftrightarrow A< B\)