\(\frac{19^{30}+1}{19^{31}+1}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

 a ,  \(A=\frac{19^{30}+1}{19^{31}+1}\Rightarrow19A=\frac{19^{31}+19}{19^{31}+1}=\frac{19^{31}+1+18}{19^{31}+1}=1+\frac{18}{19^{31}+1}\)

     \(B=\frac{19^{31}+1}{19^{32}+1}\Rightarrow19B=\frac{19^{32}+19}{19^{32}+1}=\frac{19^{32}+1+18}{19^{32}+1}=1+\frac{18}{19^{32}+1}\)

Vì \(19A< 19B\Leftrightarrow A< B\)

b, câu b tương tự nha

2 tháng 3 2019

sửa lại chút nha :

do : \(\frac{18}{19^{31}+1}>\frac{18}{19^{32}+1}\Rightarrow1+\frac{18}{19^{31}+1}>1+\frac{18}{19^{32}+1}\)

\(\Rightarrow19A< 19B\Leftrightarrow A< B\)

7 tháng 7 2019

a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)

b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)

\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)

Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

c,  Câu hỏi của truong nguyen kim 

5 tháng 4 2019

1/ \(\frac{3}{5}=\frac{60}{100}=60\%\)

\(\frac{9}{12}=\frac{75}{100}=75\%\)

5 tháng 4 2019

2/     \(18\frac{13}{19}+31\frac{8}{19}-\frac{2}{19}\)

\(=18\frac{13}{19}+31\frac{6}{19}\)

\(=\left(18+31\right)\frac{13}{19}+\frac{6}{19}\)

\(=49\frac{19}{19}\)

5 tháng 4 2019

a) A = \(\frac{101}{19}.\) \(\frac{61}{218}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)

        \(\frac{101}{218}.\frac{61}{19}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)

        =\(\frac{101}{218}.\left(\frac{61}{19}-\frac{42}{19}\right)+\frac{117}{218}\)

        =\(\frac{101}{218}.\frac{19}{19}+\frac{117}{218}\)

        =\(\frac{101}{218}.1+\frac{117}{218}\)

        =\(\frac{101}{218}+\frac{117}{218}\)

        =\(\frac{218}{218}\)\(=1\)

b) B = \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).\left(\frac{4}{5}-\frac{3}{4}-\frac{1}{20}\right)\)

        =     \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right)\)\(.\left(\frac{1}{20}-\frac{1}{20}\right)\)

        \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).0\)

        = \(0\)

17 tháng 3 2016

bài nè mik làm òi

14 tháng 5 2016

?????????????

29 tháng 4 2015

Vì 1320+1/1319+1>1

=>1320+1/1319+1>1320+1+12/1319+1+12 

Ta có: 1320+1+12/1319+12

         = 1320+13/1319+13

         =13(1319+1)/13(1318+1)

        = 1319+1/1318+1

 => 1320+1/1319+1> 1319+1/1318+1 

Vậy A<B                              

 

29 tháng 4 2015

 

\(B=\frac{13^{20}+1}{13^{19}+1}>1\)

\(B=\frac{13^{20}+1}{13^{19}+1}>\frac{13^{20}+1+12}{13^{19}+1+12}\)

\(B=\frac{13^{20}+13}{13^{19}+13}=\frac{13\left(13^{19}+1\right)}{13\left(13^{18}+1\right)}\)

\(B=\frac{13^{19}+1}{13^{18}+1}=A\)

\(\Rightarrow B>A\)

 

 

27 tháng 2 2019

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)

\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)

\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Bài làm

Ta có: 

\(\frac{1}{11}>\frac{1}{20}\)\(\frac{1}{12}>\frac{1}{20}\)\(\frac{1}{13}>\frac{1}{20}\)\(\frac{1}{14}>\frac{1}{20}\)\(\frac{1}{15}>\frac{1}{20}\)\(\frac{1}{16}>\frac{1}{20}\)\(\frac{1}{17}>\frac{1}{20}\)\(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)

=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)

hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)

=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Do đó: \(S=\frac{1}{2}\)

# Chúc bạn học tốt #

25 tháng 2 2019

A=\(\frac{-199}{10^{2011}}\)

B=\(\frac{-109}{10^{2011}}\)

Dễ dàng so sánh được A<B

15 tháng 7 2019

A=-9/102011+(-19/102010)

B=-9/102010+(-19/102011)

Vì -9/102011>(-19/102011) và -9/102011-(-19/102011)=10/102011

-19/102010<(-9/102010) và -9/102010-(-19/102010)=10/102010

mà 10/102011<10/102010 nên suy ra B>A