Tìm số nguyên a để phân số sau cũng là số nguyên:
4a - 5 |
a + 2 |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) số nguyên a phải có điều kiện gì để ta có phân số ?
a) \(\frac{32}{a-1}\)
Để ta có phân số thì \(_{a-1\ne0}\).
Kết hợp với điều kiện a là số nguyên theo đầu bài ta tìm được a là số nguyên khác 1 .
Vậy với \(_{a\ne1}\)thì \(_{\frac{32}{a-1}}\)là phân số.
b)\(\frac{a}{5a+30}\)=\(\frac{a}{5\left(a+6\right)}\)
Điều kiện để 5(a+6) là phân số là:
\(_{a+6\ne0\Leftrightarrow a\ne-6}\)
Vậy với \(_{a\ne6}\)thì \(_{\frac{a}{5a+30}}\)là phân số.
2) tìm các số nguyên x để các phân số sau là số nguyên :
a) \(\frac{13}{x-1}\)
Để \(_{\frac{13}{x-1}}\) là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
Vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
b) \(\frac{x+3}{x-2}\)
Ta có :
\(_{\frac{x+3}{x-2}}\)= \(_{\frac{x-2+5}{x-2}}\)= \(_{\frac{1+5}{x-2}}\)
để \(_{\frac{x+3}{x-2}}\) là số nguyên thì \(_{\frac{5}{x-2}}\) là số nguyên .
Nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
Vậy x thuộc (1,3-3,8) thì \(_{\frac{x+3}{x-2}}\)là số nguyên.
\(A=\frac{7a-2}{a-3}=\frac{7\left(a-3\right)+19}{a-3}=7+\frac{19}{a-3}\)
Để A nguyên thì \(\frac{19}{a-3}\) nguyên
Khi \(a-3\in\left\{1;19;-1;-19\right\}\)
\(\Leftrightarrow a\in\left\{4;22;2;-16\right\}\)
Vậy
\(\text{Ta có:}\)
\(\text{Để}\)\(\frac{4b+42}{b+7}\)\(\text{nguyên thì}\)\(4b+42⋮b+7\)
\(\text{Lại có:}\)
\(\text{4b + 42 = 4b + 28 + 14 = 4( b+7 ) + 14}\)
\(\text{Vì}\)\(b+7⋮b+7\)\(\Rightarrow4\left(b+7\right)⋮b+7\)
\(\text{Do đó:}\)\(14⋮b+7\)
\(\Rightarrow b+7\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
\(\Rightarrow b\in\left\{-6;-5;0;7\right\}\)
2) tìm các số nguyên x để các phân số sau là số nguyên :
a) 13/x -1
Để 13/x-1 là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
b) x+ 3 /x-2
ta có x+3/x-2=x-2+5/x-2=1+5/x-2
để x+3/x-2 là số nguyên thì 5/x-2 là số nguyên .
nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
vậy x thuộc (1,3-3,8) thì x+3/x-2 là số nguyên
\(2,B=a^5-5a^3+4a=a^5-4a^3-a^3+4a\)
\(=a^3\left(a^2-4\right)-a\left(a^2-4\right)\)
\(=\left(a^3-a\right)\left(a^2-4\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)
5 số tự nhiên liếp tiếp chia hết cho 5
4 số tự nhiên liên tiếp chia hết cho 4
3 số tự nhiên liên tiếp chia hết cho 6
\(\Rightarrow\left(a+1\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(120\)
\(\Rightarrow B\)\(⋮120\left(đpcm\right)\)
a: Để Q là phân số thì n+5<>0
hay n<>-5
b: Để Q là số nguyên thì \(4n⋮n+5\)
\(\Leftrightarrow n+5\in\left\{1;-1;2;-2;4;-4;5;-5;10;-10;20;-20\right\}\)
hay \(n\in\left\{-4;-6;-3;-7;-1;-9;0;-10;5;-15;15;-25\right\}\)
Giải: Để \(\frac{4a-5}{a+2}\)là số nguyên <=> 4a - 5 \(⋮\)a + 2
<=> 4(a + 2) - 13 \(⋮\)a + 2
<=> 13 \(⋮\)a + 2
<=> a + 2 \(\in\)Ư(13) = {1; -1; 13 ; -13}
Lập bảng :
Vậy ...
Để \(\frac{4a-5}{a+2}\) là số nguyên thì
\(4a-5⋮a+2\)
Mà \(a+2⋮a+2\)
\(\Rightarrow4\left(a+2\right)⋮a+2\)
\(\Rightarrow\left(4a-5\right)-\left(4a+8\right)⋮a+2\)
\(\Rightarrow4a-5-4a-8⋮a+2\)
\(\Rightarrow-13⋮a+2\)
\(\Rightarrow a+2\inƯ\left(13\right)\)
\(\Rightarrow a+2\in\left\{\pm1;\pm13\right\}\)
\(\Rightarrow a\in\left\{-3;-1;11;-15\right\}\)