Cho M= 2012^37+37^2012+1/2012^38 và N= 2012^38+37^2012+2/2012^39. So sánh M và N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2012}+\frac{37^{2012}}{2012^{38}}+\frac{1}{2012^{38}}\)
\(B=\frac{1}{2012}+\frac{37^{2012}}{2012^{39}}+\frac{2}{2012^{39}}\)
Ta có:
\(A-B=\frac{37^{2012}}{2012^{38}}-\frac{37^{2012}}{2012^{39}}+\frac{1}{2012^{38}}-\frac{2}{2012^{39}}\)
\(A-B=\frac{37^{2012}}{2012^{38}}\left(1-\frac{1}{2012}\right)+\frac{1}{2012^{38}}\left(1-\frac{2}{2012}\right)\)
\(A-B=\frac{37^{2012}}{2012^{38}}\left(\frac{2011}{2012}\right)+\frac{1}{2012^{38}}\left(\frac{2010}{2012}\right)\)
A - B > 0
=> A > B
A=201237/201238+ 372012/201238+1/201238
= 1/2012+ 372012/201238+ 1/201238
Tương tự ta có:
B=1/2012+ 372012/201239+1/201239+1/201239
Ta thấy: 1/2012=1/2012( ở 2 vế)
372012/201238 > 372012/ 201239( do cùng tử, mẫu nào nhỏ hơn thì phân số đó lớn hơn)
tương tự: 1/201238> 1/201239( 201238< 201239)
201239 là một số rất lớn nên 1/201239 rất bé và gần đến 0.
Vậy A>B.
a, Ta có : \(7x+4y⋮37\)
\(\Rightarrow23\left(7x+4y\right)⋮37\)
\(\Rightarrow161x+92y⋮37\)
\(\Rightarrow\left(13x+18y\right)+148x+74y⋮37\)
Mà \(\hept{\begin{cases}148x⋮37\\74x⋮37\end{cases}\Rightarrow13x+18y⋮37}\)
Vậy \(13x+18y⋮37\)
b, Ta có : \(A=\frac{2014^{2012}+1}{2014^{2013}+1}\)
\(\Rightarrow2014A=\frac{2014^{2013}+2014}{2014^{2013}+1}=\frac{2014^{2013}+1+2013}{2014^{2013}+1}=1+\frac{2013}{2014^{2013}+1}\)
Ta có : \(B=\frac{2014^{2011}+1}{2014^{2012}+1}\)
\(\Rightarrow2014B=\frac{2014^{2012}+2014}{2014^{2012}+1}=\frac{2014^{2012}+1+2013}{2014^{2012}+1}=1+\frac{2013}{2014^{2012}+1}\)
Vì \(2014^{2013}+1>2014^{2012}+1\)
\(\Rightarrow\frac{1}{2014^{2013}+1}< \frac{1}{2014^{2012}+1}\Rightarrow1+\frac{1}{2014^{2013}+1}< 1+\frac{1}{2014^{2012}+1}\)
\(\Rightarrow2014A< 2014B\Rightarrow A< B\)
1: \(C=2010\cdot2012\)
\(C=\left(2011-1\right)\left(2011+1\right)\)
\(C=2011\left(2011+1\right)-\left(2011+1\right)\)
\(C=2011\cdot2011+2011-2011-1=2011\cdot2011-1\)
Mà \(D=2011\cdot2011\)
\(\Rightarrow C< D\)
2: Chia 1 số cho 60 thì dư 37.Vậy chia số đó cho 15 thì được số dư là 7
3: Chú thích: giá trị nhỏ nhất=GTNN
Để M có GTNN
thì \(2012-\frac{2011}{2012-x}\) có GTNN
Nên \(\frac{2011}{2012-x}\)có GTLN
nên 2012-x>0 và x thuộc N
Suy ra: 2012-x=1
Suy ra: x=2011
Vậy, M có GTNN là 2011 khi x=2011
tìm 2 số lẻ liên tiếp biết hiệu b của phương của chúng bằng 56
\(M=\frac{2012}{2013}.\frac{2012^{2011}}{2013^{2011}}\)
\(N=\frac{2012}{2013}.\frac{2012^{2011}+1}{2013^{2011}+1}\)
Bạn tự so sánh tiếp nhé!
Đặt 20122012 = x ; 20132013 = y
Giả sử M < N
Ta có : \(\frac{x}{y}< \frac{x+2012}{y+2013}\)
\(\Leftrightarrow x\left(y+2013\right)< y\left(x+2012\right)\)
\(\Leftrightarrow xy+2013x< xy+2012y\)
\(\Leftrightarrow2013x< 2012y\)
\(\Leftrightarrow2013.2012^{2012}< 2012.2013^{2013}\)
\(\Leftrightarrow2012^{2011}< 2013^{2012}\)( Đúng )
=> Điều giả sử trên là đúng
=> M < N
Ta có :M=\(\frac{2012^{37}+37^{2012}+1}{2012^{38}}\)=\(\frac{1}{2012}\)+\(\frac{37^{2012}}{2018^{38}}\)+\(\frac{1}{2012^{38}}\)
N=\(\frac{2012^{38}+37^{2012}+2}{2012^{39}}\)=\(\frac{1}{2012}\)+\(\frac{37^{2012}}{2012^{39}}\)+\(\frac{2}{2012^{39}}\)
Suy ra: M-N=\(\frac{37^{2012}}{2012^{38}}\left(1-\frac{1}{2012}\right)\)+\(\frac{1}{2012^{38}}\left(1-\frac{2}{2012}\right)\)
\(\Rightarrow\)M-N=\(\frac{37^{2012}}{2012^{38}}.\frac{2011}{2012}+\frac{1}{2012^{38}}.\frac{2010}{2012}\)
\(\Rightarrow\)M-N>0
\(\Rightarrow\)M>N
Vậy M>N