K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 3 2019

a/ Ta có \(\dfrac{\left(a+b\right)^2}{4}\ge ab\Rightarrow\left(a+b\right)^2\ge4\Rightarrow a+b\ge2\)

\(\left(a+1\right)\left(b+1\right)=ab+\left(a+b\right)+1=a+b+2\ge2+2=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=1\)

b/ Áp dụng BĐT \(ab\le\dfrac{\left(a+b\right)^2}{4}\Rightarrow ab\le\dfrac{1}{4}\Rightarrow\dfrac{1}{ab}\ge4\)

Lại áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\) cho 2 số dương ta được:\(\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2=\dfrac{1}{2}\left(1+\dfrac{1}{ab}\right)^2\ge\dfrac{1}{2}\left(1+4\right)^2=\dfrac{25}{2}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

13 tháng 9 2019

Áp dụng BĐT Cauchy – Schwarz, ta được:

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{\left(a+b+c\right)^3}{b+c+a+c+a+b}\)

\(=\frac{\left(a+b+c\right)^3}{2\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{2}\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)

15 tháng 9 2019

ミ★长 - ƔξŦ★彡vãi cả cauchy-schwarz cho bậc 3: \("\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{\left(a+b+c\right)^3}{b+c+c+a+a+b}\)

Thiết nghĩ nên sửa đề \(a,b,c>0\) thôi chứ là gì có d? Mà nếu a >b >c > d > 0 thì liệu dấu = có xảy ra?

Áp dụng BĐT Cauchy-Scwarz ta có: \(LHS\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)

8 tháng 8 2017

a)\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)

Xảy ra khi \(a=b=c=\frac{1}{2}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)

\(\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\frac{\left(a+b\right)^2}{4}}{2}>\frac{\frac{1}{4}}{2}=\frac{1}{8}\)

c)\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\)

Khi a=b

31 tháng 8 2019

Ta co:\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)

Dat \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}.\frac{a^2+b^2}{a^2b^2}\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{16}.\frac{2}{ab}\ge1+\frac{15}{16}.\frac{2}{\frac{1}{4}}=\frac{17}{2}\)

Dau '=' xay ra \(a=b=\frac{1}{2}\)

Vay \(P_{min}=\frac{17}{2}\)khi \(a=b=\frac{1}{2}\)

12 tháng 3 2018

Xem lại đề đi bạn ơi !

Mk nghĩ đề là : cm 1/2-a + 1/2-b + 1/2-c >= 3

Nếu nói gì sai thì thông cảm nha

25 tháng 3 2016

Đề sai rồi bạn ơi!

21 tháng 7 2019

a. \(a+\frac{1}{a}\ge2\Leftrightarrow\frac{a^2+1}{a}\ge2\Leftrightarrow a^2+1\ge2a\Leftrightarrow a^2-2a+1\ge0\Leftrightarrow\left(a-1\right)^2\ge0\)(luôn đúng)

Vậy...

b, \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\Leftrightarrow\frac{a+b}{2}\ge\frac{a+b+2\sqrt{ab}}{4}\)

\(\Leftrightarrow2a+2b\ge a+b+2\sqrt{ab}\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

Vậy...

21 tháng 7 2019

Cách khác

a)Áp dụng BĐT Cô si cho 2 số dương ta có đpcm: \(a+\frac{1}{a}\ge2\sqrt{a.\frac{1}{a}}=2\)

Đẳng thức xảy ra khi a = 1.

b) Áp dụng bđt Bunhiacopxki \(2\left(\sqrt{a}^2+\sqrt{b}^2\right)\ge\left(\sqrt{a}+b\right)^2\)

Suy ra \(\left(\sqrt{a}^2+\sqrt{b}^2\right)\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2}\). Thay vào và rút gọn ta có đpcm:

\(VT\ge\sqrt{\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}}=\left|\frac{\sqrt{a}+\sqrt{b}}{2}\right|=\frac{\sqrt{a}+\sqrt{b}}{2}=VP^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b