Theo kế hoạch hai tổ sản xuất phải làm 900 sản phẩm. Do cải tiến kỹ thuật nên tổ 1 vượt mức 20% và tổ II vượt mức 15% so với kế hoạch. Vì vậy hai tổ đã sản xuất được 1055 sản phẩm. Hỏi theo kế hoạch mỗi tổ sản xuất được bao nhiêu sản phẩm?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sản phẩm tổ 1 phải làm theo kế hoạch là x ( sản phẩm )
số sản phẩm tổ 2 phải làm theo kế hoạch là y ( sản phẩm )
điều kiện: x,y ∈ N*
vì theo kế hoạch, cả 2 tổ phải làm 700 sản phẩm, ta có pt:
x + y = 700 ( 1 )
thực tế tổ 1 làm vượt mức 15% nên ta được x + 15%x = 1,15x ( sản phẩm )
tổ 2 làm vượt mức 20% ta được y + 20%y = 1.2y (sản phẩm )
Vì cả 2 tổ làm được 820 sp, ta có pt: 1,15x + 1,2y = 820 ( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ pt: \(\left\{{}\begin{matrix}x+y=700\\1,15x+1,2y=820\end{matrix}\right.\)
còn lại cậu tự tính nhé
Gọi số sản phẩm theo kế hoạch của tổ 1 là a ( sp )( a thuộc N*; a < 900 )
Ta có số sản phẩm theo kế hoạch của tổ 2 là 900 - a ( sp )
Do cải tiến kĩ thuật nên số sản phẩm của tổ 1 là : a . 120% ( sản phẩm )
Do cải tiến kĩ thuật nên số sản phẩm của tổ 2 là : ( 900 - a ) . 115% ( sản phẩm )
Theo đề bải tổng số sản phẩm khi cải tiến kĩ thuật là :
a . 120% + ( 900 - a ) . 115% = 1055
<=> a = 400 ( thỏa mãn )
Số sản phẩm theo kế hoạch của tổ 2 là : 900 - 400 = 500 ( sp )
Vậy....
Gọi x(sản phẩm) là số sản phẩm tổ 1 phải thực hiện theo kế hoạch(Điều kiện: \(x\in Z^+\))
Số sản phẩm tổ 2 phải thực hiện theo kế hoạch là:
700-x(sản phẩm)
Theo đề, ta có phương trình:
\(\dfrac{23}{20}x+\dfrac{6}{5}\left(700-x\right)=820\)
\(\Leftrightarrow\dfrac{23}{20}x+840-\dfrac{6}{5}x=820\)
\(\Leftrightarrow\dfrac{-1}{20}x=-20\)
hay x=400(thỏa ĐK)
Vậy: Tổ 1 phải làm 400 sản phẩm
Tổ 2 phải làm 300 sản phẩm
Gọi x(sản phẩm) là số sản phẩm tổ 1 phải thực hiện theo kế hoạch(Điều kiện: \(x\in N^*\))
Số sản phẩm tổ 2 phải thực hiện theo kế hoạch là:
700-x(sản phẩm)
Ta có pt:
\(\dfrac{23}{20}x+\dfrac{6}{5}\left(700-x\right)=820\)
\(\Leftrightarrow\dfrac{-1}{20}x=-20\)
`<=>x=400`
Tổ 1 làm 400 sản phẩm
Tổ 2 làm 300 sản phẩm
11:
Gọi số sản phẩm tổ 1 và tổ 2 phải làm theo kế hoạch lần lượt là a,b
Dự kiến phải sản xuất 700sp nên a+b=700
Theo đề, ta có:
a+b=700 và 1,15a+1,2b=820
=>a=400 và b=300
Lời giải:
Gọi số sản phẩm phải làm theo kế hoạch của tổ 1, tổ 2 lần lượt là $a,b$ (ĐK: $a,b\in\mathbb{N}^*$)
Theo bài ra ta có:
$a+b=900$
$0,15a+0,1b=110$
Giải hệ 2 PT trên thu được $a=400; b=500$ (sản phẩm)
Gọi lần lượt là sản phẩm mà tổ 1, tổ 2 sản xuất được theo kế hoạch
Theo kế hoạch hai tổ sản xuất được sản phẩm, ta có phương trình:
Thực tế: Tổ 1 sản xuất vượt mức tức là số sản phẩm là
Tổ 2 sản xuất vượt mức tức là số sản phẩm là
Và cả hai tổ sản xuất được sản phẩm nên ta có phương trình:
Từ (1) và (2), ta có hệ phương trình:
Vậy theo kế hoạch, tổ 1 và tổ 2 lần lượt sản xuất được sản phẩm và sản phẩm
Gọi x là số sản phẩm theo kế hoạch tổ 1 phải làm \(\left(x\in N;0< x< 900\right)\) thì
số sản phẩm tổ 2 phải làm theo kế hoạch là 900 - x ( sản phẩm )
+ Thực tế số sản phẩm tổ 1 lm đc là : \
\(x+15\%x=1,15x\) ( sản phẩm )
+ Thực tế số sản phẩm tổ 2 làm đc :
\(\left(900-x\right)+10\%\left(900-x\right)=990-1,1x\) ( sản phẩm )
+ Ta có phương trình : \(1,15x+990-1,1x=1010\)
\(\Leftrightarrow0,05x=20\Leftrightarrow x=400\) ( TM )
Vậy theo kế hoạch tổ 1 phải lm 400 sản phẩm
tổ 2 phải lm 500 sản phẩm
Gọi số chi tiết máy tổ một và hai sản xuất được lần lượt là x và y (x, y Î N*; x, y < 900)
Theo đề bài ta có hệ phương trình: x + y = 900 1 , 15 x + 1 , 1 y = 1010
Giải được x = 400 và y = 500
Vậy theo kế hoạch tổ một và hai phải sản xuất lần lượt 400 và 500 chi tiết máy
Gọi số sản phẩm theo kế hoạch của tổ 1 là a ( sp )( a thuộc N*; a < 900 )
Ta có số sản phẩm theo kế hoạch của tổ 2 là 900 - a ( sp )
Do cải tiến kĩ thuật nên số sản phẩm của tổ 1 là : a . 120% ( sản phẩm )
Do cải tiến kĩ thuật nên số sản phẩm của tổ 2 là : ( 900 - a ) . 115% ( sản phẩm )
Theo đề bải tổng số sản phẩm khi cải tiến kĩ thuật là :
a . 120% + ( 900 - a ) . 115% = 1055
<=> a = 400 ( thỏa mãn )
Số sản phẩm theo kế hoạch của tổ 2 là : 900 - 400 = 500 ( sp )
Vậy....
thanks