Bài 3
a. Tìm tất cả các cặp số nguyên x,y sao cho: (2x+1)(3y-2) = 11
b. Cho A= 22 + 23 + 24 + ... + 220. Chứng tỏ: A+ 4 không là số chính phương
LÀM NHANH CHO MÌNH VỚI MÌNH ĐANG CẦN GẤP! CẢM ƠN NHIỀU NHA!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Ta có :A=(x+y)(x+4y)(x+2y)(x+3y)+42
=(x2+5xy+4y2)(x2+5xy+6y2)+42
Đặt x2+5xy+5y2=t (t thuộc Z)
Khi đó A=(t-1)(t+1)+42
A=t2-12+42
A=(x2+5xy+5y2)2-12+42
Vì x, y thuộc Z suy ra x2 thuộc Z, 5xy thuộc Z, 5y2thuộc Z
Suy ra x2+5xy+5y2 thuộc Z
Suy ra (x2+5xy+5y2)2 là số chính phương
Ta lại có 12 và 42 cũng là số chính phương
Suy ra A là số chính phương (đpcm)
Câu 1 đây bạn nhé. Mình ko chắc là nó đúng 100% đâu.
Ta có 11=1.11=11.1
Nếu 2x+1=1 Nếu 2x+1=11 Nếu 3y-2=11 Nếu 3y-2=1
2x=1-1 2x=11-1 3y=11+2 3y=1+2
2x=0 2x=10 3y=13(loại) 3y=3
x=0:2 x=10:2 y=3:3
x=0 x=5 y=1
2x=1-1
2x=0
x=0:2
x=0
Vậy x=5 thì y=1
Ta có A.2=2.(2^2+2^3+...+2^20)
A.2=2^3+2^4+...+2^21
A.2-A=(2^3+2^4+...+2^21)-(2^2+2^3+...+2^20)
A=2^21-2^2
Chữ số tận cùng của A là (2^4)^5.2-4
(...6).2-4
(...12)-4
(...8)
Vậy chữ số tận cùng của A+4 là 2
Vậy A không là chính phương