K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

Đặt: \(x^2-6x+9=t\left(t\ge0\right)\)

Khi đó: \(\left(x^2-6x+9\right)^2-15\left(x^2-6x+10\right)=1\)

\(\Leftrightarrow t^2-15\left(t+1\right)=1\Leftrightarrow t^2-15t-15=1\)

\(\Leftrightarrow t^2-15t-16=0\Leftrightarrow\left(t-16\right)\left(t+1\right)=0\Leftrightarrow t=16\left(t\ge0\right)\) 

\(\Leftrightarrow x^2-6x+9=16\Leftrightarrow\left(x-3\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=4\\x-3=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)

Tập nghiệm của pt: \(S=\left\{7;-1\right\}\)

28 tháng 4 2020

Đặt \(x^2-6x+9=t\)

\(\Rightarrow\)Phương trình ban đầu trở thành: \(t^2-15\left(t+1\right)=1\)

\(\Leftrightarrow t^2-15t-15=1\)\(\Leftrightarrow t^2-15t-16=0\)

\(\Leftrightarrow\left(t^2+t\right)-\left(16t+16\right)=0\)\(\Leftrightarrow t\left(t+1\right)-16\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-16\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t+1=0\\t-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=-1\\t=16\end{cases}}\)

Ta thấy: \(x^2-6x+9=\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow t\ge0\)\(\Rightarrow t=16\)\(\Rightarrow x^2-6x+9=16\)

\(\Leftrightarrow x^2-6x-7=0\)\(\Leftrightarrow\left(x^2+x\right)-\left(7x+7\right)=0\)

\(\Leftrightarrow x\left(x+1\right)-7\left(x+1\right)=0\)\(\Leftrightarrow\left(x+1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=7\end{cases}}\)

Vậy tập nghiệm của phương trình là: \(S=\left\{-1;7\right\}\)

2 tháng 3 2019

\(\Leftrightarrow\left(x^2-6x+9\right)^2-1-15\left(x^2-6x+10\right)=0\)

\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-6x+10\right)-15\left(x^2-6x+10\right)=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2-6x-7\right)=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2+x-7x-7\right)=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x+1\right)\left(x-7\right)=0\)

\(Vi:x^2-6x+10=0\Leftrightarrow\left(x-3\right)^2+1>0,\forall x\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

\(hay:x-7=0\Leftrightarrow x=7\)

\(V...\)

\(:)\)

10 tháng 1 2020

giúp em với mọi người ơi:<<<<<

4 tháng 1 2018

cảm ơn bạn nhìu nha

1 tháng 2 2023

\(\left(x^2-6x+9\right)+15\left(x^2-6x+10\right)=1\)

\(\Leftrightarrow\left(x-3\right)^2+15\left[\left(x-3\right)^2+1\right]=1\)

\(\Leftrightarrow16\left(x-3\right)^2+15=1\)

\(\Leftrightarrow16\left(x-3\right)^2=-14\)

=> Phương trình vô nghiệm 

1 tháng 2 2023

\(\left(x^2-6x+9\right)-15\left(x^2-6x+10\right)=1\)

Đặt : \(x^2-6x+9=\left(x-3\right)^2=t\) thay vào pt ta được :

\(t^2-15\left(t+1\right)=1\)

\(\Leftrightarrow t^2-15t-16=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-16\right)=0\)

\(\Leftrightarrow t=\left\{{}\begin{matrix}16\\-1\end{matrix}\right.\)

với : \(t=-1\) thì \(\left(x-3\right)^2=-1\)

\(\Rightarrow ptvonghiem\)

Với : \(t=16\) thì \(\left(x-3\right)^2=16\)

\(\Leftrightarrow x\in\left\{{}\begin{matrix}7\\-1\end{matrix}\right.\)

\(vay...\)

 

14 tháng 5 2020

\(\left(x+3\right)^2\left(x^2+6x+1\right)=9\)

\(\Leftrightarrow\left(x^2+6x+9\right)\left(x^2+6x+1\right)=9\)

Đặt: \(x^2+6x+5=t\)thì:

\(\left(1\right)\Leftrightarrow\left(t-4\right)\left(t+4\right)=9\)

\(\Leftrightarrow t^2-25=0\)

\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)

\(\Leftrightarrow\left(x^2+6x\right)\left(x^2+6x+10\right)=0\)

\(\Leftrightarrow x\left(x+6\right)=0\left(x^2+6x+10=\left(x+3\right)^2+1>0\right)\)

.... bạn tự giả tiếp

Chúc bạn hc tốt :D

b: Đặt \(x^2+5x+4=a\)

\(\Leftrightarrow a=5\sqrt{a+24}\)

\(\Leftrightarrow a^2=25a+600\)

\(\Leftrightarrow a^2-25a-600=0\)

\(\Leftrightarrow\left(a-40\right)\left(a+15\right)=0\)

\(\Leftrightarrow a=-15\)

hay S=∅

15 tháng 8 2019

\(\left|x^2-9\right|=\left|-7\right|\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-9=7\\x^2-9=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=16\\x^2=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\pm4\\x=\pm\sqrt{2}\end{cases}}\)

19 tháng 8 2020

x2 + 6x - 16 > 2x - 7

<=> x2 + 6x - 2x > -7 + 16

<=> x2 + 4x > 9

<=> x2 + 4x + 4 > 9 + 4

<=> ( x + 2 )2 > 13

<=> ( x + 2 )2 > \(\left(\pm\sqrt{13}\right)^2\)

<=> \(\orbr{\begin{cases}x+2>\sqrt{13}\\x+2>-\sqrt{13}\end{cases}\Rightarrow}\orbr{\begin{cases}x>\sqrt{13}-2\\x>-2-\sqrt{13}\end{cases}}\)

1: \(\Leftrightarrow6\left(3x-1\right)+3\left(6x-2\right)=4\left(1-3x\right)\)

=>18x-6+18x-6=4-12x

=>36x-12=4-12x

=>48x=16

hay x=1/3

2: \(\Leftrightarrow\left(2x-1\right)\left(2x-1+x-3\right)=0\)

=>(2x-1)(3x-4)=0

=>x=1/2 hoặc x=4/3

21 tháng 12 2017

\(3\left(x^2-6x+10\right)^2+2\left(x^2-6x\right)-65=0\\ \Leftrightarrow3\left(\left(x-3\right)^2+1\right)^2+2\left(x^2-6x+9\right)-83=0\\ \Leftrightarrow3\left(\left(x-3\right)^4+2.\left(x-3\right)^2+1\right)+2\left(x-3\right)^2-83=0\\ \Leftrightarrow3\left(x-3\right)^4+6\left(x-3\right)^2+3+2\left(x-3\right)^2-83=0\\ \Leftrightarrow3\left(x-3\right)^4+8\left(x-3\right)^2-80=0\\ \Leftrightarrow\left(x-3\right)^2\left(3.\left(x-3\right)^2+8\right)=80\\ \Leftrightarrow\left(x-3\right)^2.\left(3x^2-18x+27+8\right)=80\)

Phá ra rồi giải tiếp !!