Cho tam giấc ABC vuông tại A có AB=3cm, BC=5cm. Lấy điểm D trên BC sao cho BD=BA. Kẻ đường thẳng vuông góc BC tại D cắt AC tại E
a, Tính CA
b, Chứng minh BE là p/g của góc ABC
c, So sánh AE và EC
d, Chứng minh BE là đường trung trực của AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=4cm
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
Do đó: ΔBAE=ΔBDE
Suy ra: \(\widehat{ABE}=\widehat{DBE}\)
hay BE là tia phân giác của góc ABC
c: Ta có: ΔBAE=ΔBDE
nên EA=ED
mà ED<EC
nên EA<EC
d: Ta có: BA=BD
nên B nằm trên đường trung trực của AD(1)
Ta có: EA=ED
nên E nằm trên đường trung trực của AD(2)
Từ (1) và (2) suy ra BE là đường trung trực của AD
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
a: AC=4cm
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
BA=BD
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAMN vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AMN}=\widehat{DMC}\)
Do đó: ΔAMN=ΔDMC
Suy ra: MN=MC
hay ΔMNC cân tại M
a. Xét tam giác vuông ABC
Theo định lý Py - ta - go ta có :
AB2 + AC2 = BC2
=> 32 + AC2 = 52
=> 9 + AC2 = 25
=> AC2 = 16
=> AC = 4
Vậy AB < AC < BC
b. Xét tam giác BAM và tam giác BDM ta có :
BM chung
Góc BAM = góc BDM ( = 90 độ )
BA = BD ( gt)
=> tam giác BAM = tam giác BDM ( ch - cgv)
=> MA = MD ( hai cạnh tương ứng )
Xét tam giác AMN và tam giác DMC
góc AMN = góc DMC ( đối đỉnh )
MA = MD ( cmt)
góc MAN= góc MDC ( = 90 độ )
=> Tam giác AMN = tam giác DMC
=> MN = MC
=> Tam giác MNC cân
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
Do đó: ΔBAE=ΔBDE
Suy ra: EA=ED
mà ED<EC
nên EA<EC
b: Ta có: BA=BD
EA=ED
Do đó: BE là đường trung trực của AD
c: Xét ΔAEK vuông tại A và ΔDEC vuông tại D có
EA=ED
\(\widehat{AEK}=\widehat{DEC}\)
Do đó: ΔAEK=ΔDEC
Suy ra: AK=DC
Xét ΔBKC có BA/AK=BD/DC
nên AD//KC
a: AC=căn 5^2-3^2=4cm
AB<AC<BC
=>góc C<góc B<góc A
b: xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
BA=BD
=>ΔBAM=ΔBDM
=>MA=MD
Xét ΔMAN vuông tại A và ΔMDC vuông tại D có
MA=MD
góc AMN=góc DMC
=>ΔMAN=ΔMDC
=>MN=MC
=>ΔMCN cân tại M
a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BA=BD
BM chung
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAMN vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AMN}=\widehat{DMC}\)
Do đó: ΔAMN=ΔDMC
Suy ra: MN=MC
hay ΔMNC cân tại M
a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
Hay \(AC^2=5^2-3^2\)
\(\Rightarrow AC^2=25-9\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\)
b) Xét \(\Delta ABE\)và \(\Delta DBE\)có:
\(\widehat{BAE}=\widehat{BDE}=90^o\)
\(BA=BD\left(gt\right)\)
\(BE\)là cạnh chung
Do đó \(\Delta ABE=\Delta DBE\left(ch-cgv\right)\)
\(\Rightarrow\widehat{ABE}=\widehat{DBE}\)(2 góc tương ứng)
\(\Rightarrow BE\)là tia phân giác của \(\widehat{ABC}\)