Cho tam giác ABC đều. Lấy M thuộc AB, N thuộc AC, E thuộc BC sao cho AM=CN=BE. Chứng minh tam giác MNE đều.
Helpppppppp meeeeeeeee!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
do tam giác abc cân tại a
=>góc abc=180-2*góc a
do am=an
=>tam giác amn can taị a
=>góc amn=180-2*góc a
=>góc amn=góc abc(vì cùng bằng
180-2*góc a)
mà hai góc này ở vị trí so le trong
=>mn song song vs ab
xét 2 tam giác abn và acm có
chung góc a
am=an
ab=ac
=>tg abn=tg acm
=>bm=cm(2 cạnh tương ứng)
cau 2
theo đề bài ta có
tg abc đều =>ab=bc=ca
ad=be=cf
=>ab-ad=bc-be=ac-cf
hay bd=ce=af
xét 3 tg ade,bed và cef ta có
góc a=gócb=gócc
ad=be=cf
bd=ce=af
=> tg ade= tg bed= tg cef
=>de=df=ef
=>tg def là tg đều
Xét ΔABM và ΔACN co
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
=>góc M=góc N
Xét ΔBME vuông tại E và ΔCNF vuông tại F có
BM=CN
góc M=góc N
Do đó: ΔBME=ΔCNF
Cho tam giác đều ABC .Trên AB,BC,CA lấy ba điểm M,N,E sao cho AM=BN=CE . CHỨNG MINH TAM GIÁC MNE DEU
a) Xét ΔABD vuông tại A và ΔABH vuông tại A có
DA=AH(gt)
AB là cạnh chung
Do đó: ΔABD=ΔABH(hai cạnh góc vuông)
⇒BD=BH(hai cạnh tương ứng)
Xét ΔDBH có BD=BH(cmt)
nên ΔDBH cân tại B(định nghĩa tam giác cân)
b) Ta có: AC=2AD(D là trung điểm của AC)
hay AC=2*5=10cm
Ta có: AC=2AB(gt)
hay AB=102=5cmAB=102=5cm
Áp dụng định lí pytago vào ΔABC vuông tại A, ta được
BC2=AB2+AC2BC2=AB2+AC2
hay BC2=52+102=125BC2=52+102=125
⇒BC=√125=5√5cmBC=125=55cm
Vậy: BC=5√5cm
tự kẻ hình :
có tam giác ABC đều (gt)
=> góc A = góc B = góc C (đn) (1)
AB = AC = BC
AB = BM + MA
AC = AN + NC
BC = BE + CE
mà BE = CN = AM (gt) (2)
=> BM = AN = CE (3)
(1)(2)(3) => tam giác AMN = tam giác CNE = tam giác BEM (c - g - c)
=> MN = NE = EM
=> tam giác MEN đều