K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

đề sai bạn ơi

28 tháng 2 2019

Ta có :  B = \(\frac{3}{1.5}+\frac{3}{5.9}+...+\frac{3}{97.101}\)

<=> \(\frac{4}{3}B=\frac{4}{3}\left(\frac{3}{1.5}+\frac{3}{5.9}+...\frac{3}{97.101}\right)\)

<=> \(\frac{4}{3}B=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{97.101}\)

<=> \(\frac{4}{3}B=4-\frac{4}{5}+\frac{4}{5}-\frac{4}{9}+...+\frac{4}{97}-\frac{4}{101}\)

<=>\(\frac{4}{3}B=4-\frac{4}{101}=\frac{400}{101}\)

  =>\(B=\frac{300}{101}\)

28 tháng 2 2019

đề bài này sai đó 1 phải là 3

ta nhân B với 4/3 sau đó ra kq

không đề là như vậy mà

nếu là 3 thì mình làm được lâu rồi

15 tháng 6 2023

\(a,\dfrac{3}{5}+\dfrac{3}{5\cdot9}+\dfrac{3}{9\cdot13}+....+\dfrac{3}{97\cdot101}\)

\(=\dfrac{3}{4}\cdot\left(\dfrac{4}{5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+....+\dfrac{4}{97\cdot101}\right)\)

\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+....+\dfrac{1}{97}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{4}\cdot\dfrac{100}{101}\)

\(=\dfrac{75}{101}\)

\(b,\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot....\cdot\left(1+\dfrac{1}{99}\right)\)

\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot....\cdot\dfrac{100}{99}\)

\(=\dfrac{100}{2}=50\)

15 tháng 6 2023

Tính nhanh:

a) \(\dfrac{3}{5}+\dfrac{3}{5.9}+\dfrac{3}{9.13}+...+\dfrac{3}{97.101}\)

\(\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)

\(\dfrac{3}{4}\left(1-\dfrac{1}{101}\right)\)

\(\dfrac{3}{4}\times\dfrac{100}{101}\)

\(\dfrac{75}{101}\)

b) \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)

\(=\dfrac{3.4.5...99.100}{2.3.4...98.99}\)

\(=\dfrac{100}{2}\)

\(=50\)

30 tháng 9 2018

viết ..... thế thì ai mà biết

17 tháng 7 2024

12.A= 1.5.12+5.9(13-1)+9.13(17-5)+13.17(21-9)+.....+97.101(105 - 93)

12.A = 1.5.12 + 5.9.13 -1.5.9 + 9.13.17- 5.9.13 +.....+ 97.101.105 -93.97.101

12.A = 1.5.12 -1.5.9 + 97.101.105

A =  (1.5.12 -1.5.9 + 97.101.105):12 = 85725

15 tháng 8 2016
  • \(B=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)

           \(4.B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{93.97}\) 

            \(4.B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\)

            \(4.B=1-\frac{1}{97}\)

             \(4.B=\frac{96}{97}\)

                 \(B=\frac{96}{97}:4\)

                 \(B=\frac{24}{97}\)

11 tháng 7 2016

\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{97.101}\)

\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{101}\right)\)

\(=\frac{1}{4}.\frac{100}{101}\)

\(=\frac{25}{101}\)