Tìm GTLN của A=\(x^2y\), biết x,y dương và 2x+2y=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x-2y+3z\left(x,y,z>0\right)\)
\(\left\{{}\begin{matrix}2x+4x+3z=8\left(1\right)\\3x+y-3z=2\left(2\right)\end{matrix}\right.\)
(1) <=> \(5x+5y=10\) <=> x+ y = 2
=> y = 2-x
Từ (1) => \(2x+4\left(2-x\right)+3z=8\)
=> -2x +3z =0
=> \(x=\dfrac{3}{2}z\) => \(z=\dfrac{2}{3}x\) thay vào A
=> \(A=x-2\left(2-x\right)+3.\dfrac{2}{3}x=5x-4\ge-4\)
Vậy Amin = -4.
Áp dụng BĐT AM-GM ta có:
\(2x+y+z\ge4\sqrt[4]{x\cdot x\cdot y\cdot z}\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{4\sqrt[4]{x^2yz}}\)
Lại có: \(4\sqrt[4]{\frac{1}{x}\cdot\frac{1}{x}\cdot\frac{1}{y}\cdot\frac{1}{z}}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự ta cũng có: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)\(;\)\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)
Cộng theo vế ta có:\(VT\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1005}{2}\)
Thắng pro quá rồi ,bài này chỉ đơn giản áp dụng bđt 1/(x+y) <= 1/4(1/x+1/y)
để ý 1/2x+y+z=1/(x+y)+(z+x)
Từ giả thiết \(=>x+y=2xy\)
Áp dụng bđt Cô-si ta có :
\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y\)
\(y^4+x^2\ge2\sqrt{y^4x^2}=2y^2x\)
Khi đó : \(C\le\frac{1}{2}\left[\frac{1}{xy\left(x+y\right)}+\frac{1}{xy\left(x+y\right)}\right]=\frac{1}{2}.\frac{2}{xy\left(x+y\right)}=\frac{1}{xy\left(x+y\right)}\)
đến đây dễ rồi ha
oke làm tiếp
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}< =>2\ge\frac{4}{x+y}< =>x+y\ge2\)
Mặt khác \(C\le\frac{1}{xy\left(x+y\right)}=\frac{1}{\frac{\left(x+y\right)}{2}.\left(x+y\right)}=\frac{2}{\left(x+y\right)^2}\le\frac{1}{2}\)
Vậy GTLN của C = 1/2 đạt được khi x=y=1
Lời giải:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(4=2x+2y=x+x+2y\geq 3\sqrt[3]{x.x.2y}=3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow 4\geq 3\sqrt[3]{2A}\)
\(\Leftrightarrow A\leq \frac{32}{27}\)
Vậy \(A_{\max}=\frac{32}{27}\Leftrightarrow x=2y=\frac{4}{3}\)