cho a,b,c là các số thực dương và a + b + c = 3
Tìm GTLN của biểu thức: \(P=\dfrac{ab}{2c+a+b}+\dfrac{bc}{2a+b+c}+\dfrac{ca}{2b+c+a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)
CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)
Hi vọng là tìm GTLN:
Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)
\(\Rightarrow a+b+c\le3\).
Áp dụng bất đẳng thức Schwarz ta có:
\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).
Đẳng thức xảy ra khi a = b = c = 1.
\(\dfrac{\sqrt{ab}}{a+c+b+c}\le\dfrac{\sqrt{ab}}{2\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{4}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
Tương tự và cộng lại:
\(A\le\dfrac{1}{4}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng bđt \(\dfrac{9}{a+b+c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Khi đó \(\dfrac{9.ab}{a+3b+2c}=ab.\dfrac{9}{\left(a+c\right)+\left(c+b\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{c+b}+\dfrac{a}{2}\)
Tương tự và cộng theo vế suy ra \(9A\le\dfrac{3\left(a+b+c\right)}{2}=9< =>A\le1\)
Dấu "=" xảy ra khi và chỉ khi a = b = c = 2
Bunhiacopxki:
\(\left(b+a+a\right)\left(b+c+\dfrac{c^2}{a}\right)\ge\left(b+\sqrt{ca}+c\right)^2\)
\(\Rightarrow\dfrac{2a^2+ab}{\left(b+\sqrt{ca}+c\right)^2}\ge\dfrac{2a^2+ab}{\left(2a+b\right)\left(b+c+\dfrac{c^2}{a}\right)}=\dfrac{a^2}{c^2+ab+bc}\)
Tương tự:
\(\dfrac{2b^2+bc}{\left(c+\sqrt{ca}+a\right)^2}\ge\dfrac{b^2}{a^2+ab+bc}\)
\(\dfrac{2c^2+ca}{\left(a+\sqrt{bc}+b\right)^2}\ge\dfrac{c^2}{b^2+ac+bc}\)
\(\Rightarrow P\ge\dfrac{a^2}{c^2+ab+ac}+\dfrac{b^2}{a^2+ab+bc}+\dfrac{c^2}{b^2+ac+bc}\)
\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)
Dấu "=" xảy ra khi \(a=b=c\)
\(M=\dfrac{1}{\dfrac{c}{a}+\dfrac{2a}{b}+3}+\dfrac{1}{\dfrac{a}{b}+\dfrac{2b}{c}+3}+\dfrac{1}{\dfrac{b}{c}+\dfrac{2c}{a}+3}\)
\(đặt\left(\dfrac{a}{b};\dfrac{b}{c};\dfrac{c}{a}\right)=\left(x;y;z\right)\Rightarrow xyz=1\left(x;y;z>0\right)\)
\(M=\dfrac{1}{z+2x+3}+\dfrac{1}{x+2y+3}+\dfrac{1}{y+2z+3}\)
\(ta\) \(đi\) \(cminh:A\le\dfrac{1}{2}\)
có:
\(\dfrac{1}{z+2x+3}\le\dfrac{1}{6}\Leftrightarrow z+2x+3\ge6\Leftrightarrow2x+z\ge3\)
\(\dfrac{1}{x+2y+3}\le\dfrac{1}{6}\Leftrightarrow x+2y\ge3\)
\(\dfrac{1}{y+2z+3}\le\dfrac{1}{6}\Rightarrow y+2z\ge3\)
\(cộng\) \(vế\Rightarrow2x+z+2y+x+2z+y\ge9\Leftrightarrow x+y+z\ge3\left(đúng\right)\)
\(do:x+y+z\ge3\sqrt[3]{xyz}=3\)
\(\Rightarrow A\le\dfrac{1}{2}dấu"="\Leftrightarrow x=y=z=1\Rightarrow a=b=c\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)
BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)
Ta có:
\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)
\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)
Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)
\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)
Cộng vế với vế:
\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=\dfrac{1}{a}+\dfrac{4}{2b}+\dfrac{9}{3c}\ge\dfrac{\left(1+2+3\right)^2}{a+2b+3c}=\dfrac{36}{a+2b+3c}\)
\(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{1}{c}=\dfrac{4}{2a}+\dfrac{9}{3b}+\dfrac{1}{c}\ge\dfrac{\left(2+3+1\right)^2}{2a+3b+c}=\dfrac{36}{2a+3b+c}\)
\(\dfrac{3}{a}+\dfrac{1}{b}+\dfrac{2}{c}=\dfrac{9}{3a}+\dfrac{1}{b}+\dfrac{4}{2c}\ge\dfrac{\left(3+1+2\right)^2}{3a+b+2c}=\dfrac{36}{3a+2b+c}\)
Cộng theo vế: \(6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge36F\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge6F\)
Mặt khác: \(ab+bc+ac=3abc\Leftrightarrow\dfrac{ab+bc+ac}{abc}=3\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
\(\Rightarrow18\ge36F\Leftrightarrow F\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a+c}+\frac{1}{b+c}\geq \frac{4}{a+c+b+c}=\frac{4}{2c+a+b}\)
\(\Rightarrow \frac{ab}{a+c}+\frac{ab}{b+c}\ge \frac{4ab}{2c+a+b}\)
Tương tự: \(\frac{bc}{a+c}+\frac{bc}{a+b}\geq \frac{4bc}{2a+b+c}\); \(\frac{ca}{b+a}+\frac{ca}{b+c}\geq \frac{4ca}{2b+a+c}\)
Cộng 3 BĐT vừa thu được theo vế :
\(\Rightarrow \frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+c}+\frac{bc}{a+b}+\frac{ca}{b+a}+\frac{ca}{b+c}\geq 4P\)
\(\Leftrightarrow \frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}\geq 4P\Leftrightarrow a+b+c\geq 4P\)
\(\Leftrightarrow 3\geq 4P\Leftrightarrow P\leq \frac{3}{4}\)
Vậy \(P_{\max}=\frac{3}{4}\Leftrightarrow a=b=c=1\)
Bài này sử dụng BĐT phụ là ra mà