Cho S= 21+ 22+ ...+2100
Rút gọn tổng S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
S=2+2^2+......+2^100
S.2=2.(2+2^2+........+2^100)
S.2=2^2+2^3+........+2^101
S.2-S=(2^2+2^3+....+2^101) - (2+2^2+.....+2^100)
S=2^101-2
suy ra : S+2= (2^101 - 2) +2 =2^101
Vậy S+2 không là số chính phương
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(\Rightarrow A=2A-A=2^2+2^3+2^4+...+2^{100}+2^{101}-2-2^2-2^3-2^4-...-2^{99}-2^{100}=2^{101}-2\)
Sửa đề: \(S=2^{100}-2^{99}+2^{98}-...+2^2-2\)
=>\(2\cdot S=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
=>\(2S+S=2^{100}-2^{99}+2^{98}-...+2^2-2+2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
=>\(3S=2^{101}-2\)
=>\(S=\dfrac{2^{101}-2}{3}\)
a .21=3.7 vậy p = 3 hoặc p = 7
b.p/21<1 nên p<21 trừ các giá trị là bội của 0, của 3,của 7
Vậy M ={0,1,2,3...19,20}
\(S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S=2^2+2^3+....+2^{101}\)
\(\Rightarrow S=2^{101}-2\)
\(S=2^1+2^2+...+2^{99}+2^{100}\)
\(\Leftrightarrow2S=2^2+...+2^{101}\)
\(\Leftrightarrow S=2^{101}-2\)