cho điểm a nằm ngoài đường tròn tâm o vẽ 2 tiếp tuyếnAM AN với đường tròn tâm (M N là các tiếp điểm) Vẽ các tuyến A C D không đi qua tâm o
chứng minh 5 điểm A M O N cùng thuộc 1 đường thẳng
Chứng minh FN.FA =FO.FH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AM và AN là 2 tiếp tuyến của đường tròn tâm O
=> \(\left\{{}\begin{matrix}AM\perp OM\\AN\perp ON\end{matrix}\right.\) => \(\left\{{}\begin{matrix}GócAMO=90\\GócANO=90\end{matrix}\right.\)
Xét từ giác AMON có :
AMO + ANO = 90 + 90 = 180
Mà 2 góc này ở vị try đối diện nhau
=> Tứ giác AMON nội tiếp < đpcm>
a: ΔOED cân tại O có OF là trung tuyến
nên OF vuông góc ED
góc OFA=góc OBA=góc OCA=90 độ
=>O,F,B,A,C cùng thuộc 1 đường tròn
b: góc DHC=góc CBA
góc CBA=góc DFC
=>góc DHC=góc DFC
a: ΔOCD can tại O
mà OI là trung tuyến
nên OI vuông góc CD
Xét tứ giác OAMB có
góc OAM+góc OBM=180 độ
=>OAMB là tứ giác nội tiếp
=>O,A,M,B cùng thuộc 1 đường tròn đường kính OM(1)
Vì ΔOIM vuông tại I
nên I nằm trên đường tròn đường kính OM(2)
Từ (1), (2) suy ra ĐPCM
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng vơi ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
a: Xét tứ giác ABCO có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABCO là tứ giác nội tiếp đường tròn đường kính OA
=>A,B,C,O cùng thuộc đường tròn đường kính OA
tâm là trung điểm của OA
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại M và M là trung điểm của BC
Xét ΔOCA vuông tại C có CM là đường cao
nên \(OM\cdot OA=OC^2\)
mà OC=OE(=R)
nên \(OE^2=OM\cdot OA\)
c: Ta có: ΔOEF cân tại O
mà OG là đường trung tuyến
nên OG\(\perp\)EF
Xét ΔOGA vuông tại G và ΔOMH vuông tại M có
\(\widehat{GOA}\) chung
Do đó: ΔOGA đồng dạng với ΔOMH
=>\(\dfrac{OG}{OM}=\dfrac{OA}{OH}\)
=>\(OG\cdot OH=OA\cdot OM=OE^2\)
=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
Xét ΔOGE và ΔOEH có
\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
\(\widehat{GOE}\) chung
Do đó: ΔOGE đồng dạng với ΔOEH
=>\(\widehat{OGE}=\widehat{OEH}\)
=>\(\widehat{OEH}=90^0\)
=>HE là tiếp tuyến của (O)
a: góc AMO+góc ANO=90+90=180 độ
=>AMON nội tiếp
b: Xet ΔAMB và ΔACM có
góc AMB=góc ACM
góc MAB chung
=>ΔAMB đồng dạng với ΔACM
=>AM^2=AB*AC=AM*AN
c: AB*AC=AM^2=AO^2-R^2
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC