tìm x,y thuộc Z biết
\(8x^2-12x+3xy-9y=161\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`y=2/3x`
`=>3y=2x`
`=>8x=12y`
Mặt khác:`4z=3y`
`=>z=3/4y`
`=>5z=15/4y`
Thay `8x=12y,5z=15/4y` vào `8x+9y+5z=1980`
`=>15/4y+9y+12y=1980`
`=>21y+15/4y=1980`
`=>99/4y=1980`
`=>1/4y=20`
`=>y=80`
`=>x=3/2y=120,z=3/4y=60`
Vậy `(x,y,z)=(120,80,60)`
Ta có: 4z=3y
nên \(4z=3\cdot\dfrac{2}{3}x=x\)
hay \(z=\dfrac{1}{4}x\)
Ta có: 8x+9y+5z=1980
\(\Leftrightarrow8x+9\cdot\dfrac{2}{3}x+5\cdot\dfrac{1}{4}x=1980\)
\(\Leftrightarrow x\cdot\dfrac{61}{4}=1980\)
hay \(x=\dfrac{7920}{61}\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}x=\dfrac{2}{3}\cdot\dfrac{7920}{61}=\dfrac{5280}{61}\\4z=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5280}{61}\\4z=\dfrac{15840}{61}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5280}{61}\\z=\dfrac{3960}{61}\end{matrix}\right.\)
Vậy: \(\left(x,y,z\right)=\left(\dfrac{7920}{61};\dfrac{5280}{61};\dfrac{3960}{61}\right)\)
Ta có y = (8x2 - 25)/(3x + 5) <=> 9y = 24x - 40 -25/(3x + 5)(1)
Để 9y nguyên thì 3x+5 phải là ước nguyên của 25 hay 3x + 5 = +-1;+-5;+-25
Giải ra thế lần lược vào (1) cái nào cho kết quả là bội của 9 thì đó là nghiệm x cần tìm có x => y
a) x^2+2xy+y^2-16
=(x+y)2-16
=(x+y-4)(x+y+4)
b) 3x^2+5x-3xy-5y
=(3x2-3xy)+(5x-5y)
=3x(x-y)+5(x-y)
=(x-y)(3x+5)
c) 4x^2-6x^3y-2x^2+8x
ko bik hoặc sai đề
d) x^2-4-2xy+y^2
=(x-y)2-4
=(x-y+2)(x-y-2)
e) x^3-4x^2-12x+27
=sai đề
g) 3x^2-18x+27
=3(x2-6x+9)
=3(x-3)2
h) x^2-y^2-z^2-2yz
=x2-(y2+z2+2yx)
=x2-(y+z)2
=(x-y-z)(x+y+z)
k) 4x^2(x-6)+9y^2(6-x)
=4x2(x-6)-9y2(x-6)
=(x-6)(4x2-9y2)
=(x-6)(2x-3y)(2x+3y)
l)6xy+5x-5y-3x^2-3y^2
=(5x-5y)+(-3x2+6xy-3y2)
=5(x-y)-3(x2-2xy+y2)
=5(x-y)-3(x-y)2
=(x-y)(5-3(x-y))
=(x-y)(5-3x+3y)
\(8x^2-3xy-5y=25\)
8x² - 3xy - 5y = 25
<=> 72x² - 27xy - 45y = 225 ( nhân 9 vào 2 vế)
<=> 72x² - 27xy - 120x + 120x - 45y - 200 = 25
<=> 3x(24x - 9y - 40) + 5(24x - 9y - 40) = 25
<=> (3x + 5)(24x - 9y - 40) = 25
@ TH1 :
{ 3x + 5 = 1
{ 24x - 9y - 40 = 25
=> x = - 4/3; y = - 97/9 ( loại)
@ TH2 :
{ 3x + 5 = - 1 => x = - 2
{ 24x - 9y - 40 = - 25
=> x = - 2 ; y = - 7 ( nhận)
@ TH3 :
{ 3x + 5 = 5
{ 24x - 9y - 40 = 5
=> x = 0; y = - 5 ( nhận)
@ TH4 :
{ 3x + 5 = - 5
{ 24x - 9y - 40 = - 5
=> x = - 10/3; y = - 115/9 ( loại)
@ TH5 :
{ 3x + 5 = 25
{ 24x - 9y - 40 = 1
=> x = 20/3; y = - 39/9 ( loại)
@ TH6 :
{ 3x + 5 = - 25
{ 24x - 9y - 40 = - 1
=> x = - 10; y = - 33 ( nhận)
KL : PT có 3 nghiệm nguyên (x; y) = (- 2;- 7); (0; - 5); ( - 10; - 33)
100 chia 9 dư 1 => 8x+10z chia 9 dư 1,chẵn (vì 9y chia hết cho 9)(1)
mà x+y+z>11
=> 8x+8y+8z>88
=> y+2z<12=> z<6=>x+y<5(2)
tương tự:
9x+9y+9z<99
=> z-x<1
=> z<1+x(3)
để thoả mãn cả (1) (2) và (3) thì:
x=4,y=2,z=5
x=3,y=z=4
x=2,y=6,z=3
x=1,y=8,z=2
x=9,y=2,z=1
ĐKXĐ: \(x\ne0\)
\(y=\sqrt{\frac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)
\(y=\sqrt{\frac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)
\(y=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(y=\left|\frac{x^2+3}{x}\right|+\left|x-2\right|\)
Ta có bảng xét dấu:
x 0 2 x - 2 x 0 0 - - - + + +
Với \(x< 0,y=\frac{x^2+3}{-x}+2-x=\frac{2x^2-2x+3}{-x}\)
Với \(0< x\le2,y=\frac{x^2+3}{x}+2-x=\frac{2x+3}{x}\)
Với \(x>2,y=\frac{x^2+3}{x}+x-2=\frac{2x^2-2x+3}{x}\)
- Ta thấy ngay, với cả ba trường hợp thì \(y\in Z\Leftrightarrow x\in U\left(3\right)=\left\{-3;-1;1;3\right\}\)