K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

Đặt \(a=5k+1,b=5n+4\left(k,n\in N\right)\)

\(\Rightarrow ab+1=\left(5k+1\right)\left(5n+4\right)+1=25kn+20k+5n+4+1=25kn+20k+5n+5=5\left(5kn+5k+n+1\right)⋮5\forall k,n\in N\)

Ta có: ab+1

\(=\left(5k+1\right)\left(5c+4\right)+1\)

\(=25kc+20k+5c+4+1\)

\(=25kc+20k+5c+5⋮5\)

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

2 tháng 9 2017

ko hiểu

24 tháng 9 2017

Trí zẹp zai

24 tháng 9 2017

Bùi Thị Thu Hiền làm con mẹ gì vậy?

5 tháng 7 2015

1) a chia 6 dư 2 => a= 6k+2

b chia 6 dư 3 => b= 6k+3

=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6 

2) a= 5k+2; b=5k+3

=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)

=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1

=> ab chia 5 dư 1

23 tháng 7 2018

Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).

Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.

Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮  5 (đpcm).

29 tháng 10 2023

a chia 5 dư 1 nên \(a=5m+1\left(m\inℕ\right)\)

b chia 5 dư 4 nên \(b=5n+4\left(n\inℕ\right)\)

Do đó \(ab=\left(5m+1\right)\left(5n+4\right)+1\)

\(ab=25mn+20m+5n+4+1\)

\(ab=25mn+20m+5n+5⋮5\)

Ta có đpcm

12 tháng 9 2021

Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)

\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)

\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)

\(=25k^2+20k+5k+4+1\)

\(=25k^2+25k+5⋮5\)

18 tháng 2 2017

171 nhé bạn!

18 tháng 2 2017

đáp án là 81