K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

A B C M N O H K 1 2 1 2

Cm: a) Ta có: góc ABC + góc ABM = 1800 (kề bù)

                  góc ACN + góc ACB = 1800 (kề bù)

và góc ABC = góc ACB (vì t/giác ABC cân tạo A)

=> góc ABM = góc ACN

Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

    góc ABM = góc ACN (cmt)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) ko đề

c) Xét t/giác AHB và t/giác AKC

có  góc H1 = góc K1 = 900 (gt)

AB = AC (gt)

góc HAB = góc KAC (vì t/giác ABM = t/giác ACN)

=> t/giác AHB = t/giác AKC (ch - gn)

=> AH = AK (hai cạnh tương ứng)

Xét t/giác AHO và t/giác AKO

có AH = AK (cmt)

  góc H1 = góc K1 = 900 (gt)

  AO : chung

=> t/giác AHO = t/giác AKO (ch - cgv)

=> HO = KO(hai cạnh tương ứng)

Mà HB + BO = HO

  KC + CO = OK

và HB = KC (vì t/giác AHB = t/giác AKC)

=> BO = CO 

=> t/giác OBC là t/giác cân tại O

28 tháng 1 2022

a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\) 

Xét △ABM và △ACN có:

\(AB=AC\) ( Vì △ABC cân)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

BM=CN(gt)

Do đó : △ABC=△ACN\(\left(c.g.c\right)\)

b)Xét △vuoongAHB và △vuoongAKC có

AB=AC(vì △ABC cân)

\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)

⇒△AHB=△AKC ( cạnh huyền góc nhọn)

⇒AH=AK

 

 

28 tháng 1 2022

a, Ta có : ^ABM = ^MBC - ^ABC (1) 

^ACN = ^NCB - ^ACB (2) 

Từ (1) ; (2) suy ra ^ABM = ^ACN 

Xét tam giác ABM và tam giác ANC có : 

^ABM = ^ANC ( cmt ) 

AB = AC ( gt )

MB = NC (gt)

Vậy tam giác ABM = tam  giác ACN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

Xét tam giác AMN có : AN = AM 

Vậy tam giác AMN là tam giác cân tại A 

=> ^M = ^N (3) 

b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4) 

^ACK = ^ANC ( cùng phụ ^KCN ) (5) 

Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK 

=> ^HBM = ^KCN 

Xét tam giác AHB và tam giác AKC ta có : 

^ABH = ^ACK ( cmt )

AB = AC 

^AHB = ^AKC = 900

Vậy tam giác AHB = tam giác AKC ( ch - gn )

=> AH = AK ( 2 cạnh tương ứng )

c, Ta có : ^HBM = ^OBC ( đối đỉnh ) 

^KCN = ^BCO ( đối đỉnh ) 

mà ^HBM = ^KCN (cmt) 

Xét tam giác OBC có : 

^OBC = ^OCB vậy tam giác OBC cân tại O

 

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

$BH, CK$ cùng vuông góc với $AN$ thì nó song song nhau. Như vậy thì $BH, CK$ làm sao giao nhau tại $O$ được?

Em xin lỗi, em chép sai đề bài. Còn đúng ra là \(BH\perp AM\), em có sửa lại đề bài rồi ạ!

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó:ΔABM=ΔACN

b: Xét ΔHMB vuông tại H và ΔKNC vuông tại K có

MB=NC

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHMB=ΔKNC

Suy ra: BH=CK

c: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

BH=CK

Do đó:ΔABH=ΔACK

Suy ra:  AH=AK

Xét ΔAMN có AH/AM=AK/AN

nên HK//MN

hay HK//BC

d: Ta có: ΔHBM=ΔKCN

nên \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

24 tháng 2 2022

Cám ơn nhiều ạ!

a: Xét ΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

c: Ta có: ΔAHB=ΔAKC

nên AH=AK

21 tháng 1 2022

seo nói cj Lam như vậy

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(cmt)

Do đó: ΔABM=ΔACN(c-g-c)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AI chung

=>ΔAIB=ΔAIC

b: ΔABC cân tại A

mà AI là trung tuyến

nên AI vuông góc CB

c: Xét ΔABM và ΔACN co

AB=AC

góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN

Bài 9: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm Nsao cho BM = CN.a) Chứng minh rằng tam giác AMN là tam giác cânb) Kẻ BH ⊥ AM (H ∊ AM), kẻ CK ⊥ AN (K ∊ AN). Chứng minh rằng BH = CKc) Chứng minh rằng AH = AKd) Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?Bài 10: Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm.a) Tính độ dài đoạn thẳng BCb) Vẽ tia phân...
Đọc tiếp

Bài 9: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N
sao cho BM = CN.
a) Chứng minh rằng tam giác AMN là tam giác cân
b) Kẻ BH ⊥ AM (H ∊ AM), kẻ CK ⊥ AN (K ∊ AN). Chứng minh rằng BH = CK
c) Chứng minh rằng AH = AK
d) Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
Bài 10: Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm.
a) Tính độ dài đoạn thẳng BC
b) Vẽ tia phân giác BD của góc B. Từ D kẻ DE BC ⊥ tại E.
Chứng minh  =  ABD EBD
c) Chứng minh: Tam giác ABE là tam giác cân
Bài 11: Cho ABC vuông tại A. BE là tia phân giác của góc ABC (E AC .  ) Kẻ EI BC ⊥ (I BC .  )
a) Chứng minh  =  ABE IBE
b) Tia IE và tia BA cắt nhau tại M. Chứng minh EMC cân
c) Chứng minh AI // MC
Bài 12: Cho ABC vuông tại B (AC AB .  ) D là điểm thuộc AC sao cho AB = AD. Kẻ AH BD ⊥ tại
H, AH cắt BC tại E.

a) Chứng minh
b) Chứng minh cân
c) Giả sử Tính cạnh BC?

 =  ABH ADH
EBD BED 120 , = o AB 2cm. = Bài 13: Cho ABC vuông tại C có A 60 = o và đường phân giác của BAC cắt BC tại E. Kẻ EK AB ⊥
tại K (K AB .  ) Kẻ BD AE ⊥ tại D (D AE .  ) Chứng minh:

a)c) KA = KB
b) AE là đường trung trục của đoạn thẳng CKd) EB > EC

 =  ACE AKE Bài 14: Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB (E AC F AB   , )
a) Chứng minh  =  ABE ACF
b) Gọi I là giao điểm của BE và CF. Chứng minh BIC cân
c) So sánh FI và IC
d) Gọi M là trung điểm của BC. Chứng minh A, I, M thẳng hàng.
Bài 15: Cho tam giác ABC cân tại A có BAC = 1200 . Lấy D E , bên cạnh BC , sao BAD CAE = = 300 .

a) là tam giác gì? Vì sao?b) là tam giác gì? Vì sao?

DAB DAE

1

Bài 9:

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

c: Ta có: ΔAHB=ΔAKC

nên AH=AK

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN

HB=KC

Do đó: ΔHBM=ΔKCN

Suy ra: \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

21 tháng 4 2020

a) Vì tam giác ABC cân => \(\hept{\begin{cases}AB=AC\\\widehat{ABM}=\widehat{ANC}\end{cases}}\)

mà BM=CN => \(\Delta AMB=\Delta ANC\left(cgc\right)\)=> AM=AN

=> Tam giác AMN cân tại A

b) \(S_{AMB}=S_{ANC}\)=> \(BH\cdot AM=CK\cdot AN\)

<=> BH=CK (vì AM=AN)
c) \(\hept{\begin{cases}\widehat{AHB}=\widehat{AKC}=90^o\\AB=AC\\BH=CK\end{cases}\Rightarrow\Delta AHB=\Delta AKC\left(ch-gv\right)}\)

=> AH=CK