Tính \(B=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+......+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(B=\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}\)
\(\Rightarrow2B=1-\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^{99}}\)
\(\Rightarrow2B+B=\left(1-\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^{99}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}\right)\)
\(\Rightarrow3B=1-\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^{99}}+\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}\)
\(\Rightarrow3B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow3B=1-\frac{1}{2^{100}}\)
\(\Rightarrow B=\frac{1-\frac{1}{2^{100}}}{3}\)
\(A=\frac{\frac{98}{2}+1+\frac{97}{3}+1+.....+\frac{2}{98}+1+\frac{1}{99}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{99}+\frac{1}{100}}=\frac{\frac{100}{2}+\frac{100}{3}+........+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}+\frac{1}{100}}\)
\(=\frac{100\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}{\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}=100\)
\(\frac{1}{2}B=\frac{1}{2^2}-\frac{1}{2^3}+...-\frac{1}{2^{101}}\)
\(B+\frac{1}{2}B=\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}+\frac{1}{2^2}-...-\frac{1}{2^{101}}\)
\(\frac{3}{2}B=\frac{1}{2}-\frac{1}{2^{101}}\)
\(B=\frac{1}{3}-\frac{1}{2^{100}.3}\)
#Đức Lộc#