Cho tam giác ABC có các đường phân giác AD, BE , CF cắt nhau tại I . DF cắt BI tại M , DE cắt CI tại N . Biết AM = AN . Chứng minh rằng ABC là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AM//BD
=> \(\dfrac{AM}{BD}=\dfrac{AF}{FB}\)
Xét tam giác ACB có CF là đường phân giác góc C
=> \(\dfrac{AC}{BC}=\dfrac{AF}{BF}\) (theo t/chất đường phân giác trong tam giác)
=> \(\dfrac{AM}{BD}=\dfrac{AC}{BC}\)
Xét tứ giác \(HECD\) có :
∠\(HEC=90^0\) ( Vì \(BE\)⊥\(AC\) )
∠\(HDC=90^0\) ( Vì \(AD\)⊥\(BC\) )
Mà 2 góc này đối nhau do đó :
Tứ giác \(HECD\) nội tiếp đường tròn => ∠\(HDE\)\(=\)∠\(HCE\) ( Cùng chắn cung \(HE\) )\(\left(1\right)\)
Tương tự :
Tứ giác \(HFBD\) cũng nội tiếp đường tròn ( Vì ∠\(HBF\)\(=90^0\) và ∠\(HDB=90^0\))
=> ∠\(HDF=\) ∠\(FBH\) ( Cùng chắn cung \(HF\) )\(\left(2\right)\)
Ta lại có :
∠\(CFB=\) ∠\(BEC\) \(=90^0\)
Mà 2 góc này cùng nhìn cạnh \(BC\) do đó :
Tứ giác \(EFBC\:\) nội tiếp đường tròn => ∠\(EBF\)\(=\) ∠\(ECF\) ( Cùng chắn cung \(EF\) )\(\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\) suy ra ∠\(IDH=\) ∠\(KDH\) hay \(DH\) là tia phân giác của △\(DIK\)\(\left(4\right)\)
Mặc khác : Đường thẳng qua \(H\)//BC => Đường thẳng đó ⊥ \(AD\) tại \(H\) hay \(DH\) là đường cao của △\(DIK\)\(\left(5\right)\)
Từ \(\left(4\right)\) và \(\left(5\right)\) suy ra △\(DIK\) cân =>\(đpcm\)
Gọi K là giao điểm của 3 đg pg trong tg ABC
Do AD ,BE ,CF lần lượt là các đg pg của tg ABC nên ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}\) => AB.DC=AC.BD ; (*)
\(\frac{AE}{EC}=\frac{AB}{AC}\) ; (1)
\(\frac{AF}{BF}=\frac{AC}{BC}\) ;(2)
Mặt khá: MN//BC (gt) => tg ANE\(\infty\)tg CDE (Ta-lét) =>\(\frac{AN}{DC}=\frac{AE}{EC}\) (3)
và tg AMF \(\infty\)tg BDF (Ta-lét) => \(\frac{AM}{BD}=\frac{AF}{BF}\) (4)
Từ (1),(3)=>\(\frac{AN}{DC}=\frac{AB}{BC}=>AN.BC=AB.DC\) (**)
Từ (2),(4)=> \(\frac{AM}{BD}=\frac{AC}{BC}=>AM.BC=AC.DB\) (***)
Từ (*),(**),(***)=> AN.BC=AM.BC=> AM=AN . Mà M,A,N thẳng hàng nên A là t/đ của MN (đpcm)
Bạn kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath