Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M O G N
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
A B C D M N P Q E F T S
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
A B C M N E F K
Gọi K là giao điểm của 3 đg pg trong tg ABC
Do AD ,BE ,CF lần lượt là các đg pg của tg ABC nên ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}\) => AB.DC=AC.BD ; (*)
\(\frac{AE}{EC}=\frac{AB}{AC}\) ; (1)
\(\frac{AF}{BF}=\frac{AC}{BC}\) ;(2)
Mặt khá: MN//BC (gt) => tg ANE\(\infty\)tg CDE (Ta-lét) =>\(\frac{AN}{DC}=\frac{AE}{EC}\) (3)
và tg AMF \(\infty\)tg BDF (Ta-lét) => \(\frac{AM}{BD}=\frac{AF}{BF}\) (4)
Từ (1),(3)=>\(\frac{AN}{DC}=\frac{AB}{BC}=>AN.BC=AB.DC\) (**)
Từ (2),(4)=> \(\frac{AM}{BD}=\frac{AC}{BC}=>AM.BC=AC.DB\) (***)
Từ (*),(**),(***)=> AN.BC=AM.BC=> AM=AN . Mà M,A,N thẳng hàng nên A là t/đ của MN (đpcm)