K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge2\)

\(\Leftrightarrow a^2+2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+2\ge2\)

<=> Sai đề

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

7 tháng 4 2020

Có \(a+\frac{1}{b\left(a-b\right)^2}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)^2}=\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b\left(a-b\right)^2}\)

Áp dụng BĐT Cosi cho 4 số ta có:

\(\frac{a-b}{2}+\frac{a-b}{2}+b+\frac{1}{b\left(a-b\right)^2}\ge4\sqrt[4]{\frac{a-b}{2}\cdot\frac{a-b}{2}\cdot b\cdot\frac{1}{b\left(a-b\right)^2}}\)

\(=4\cdot\sqrt[4]{\frac{1}{4}}=1\cdot\frac{\sqrt{1}}{2}=2\sqrt{2}\)

\(\Rightarrow a+\frac{1}{b\left(a-b\right)^2}\ge2\sqrt{2}\)

Dấu "=" xảy ra khi \(\frac{a-b}{2}=b\)

\(\Leftrightarrow\frac{a}{2}=\frac{3b}{2}\Leftrightarrow a=3b\)

Cách giải: Linh Vy. Trình bày: Nhật Quỳnh

NV
1 tháng 3 2020

Bạn tham khảo:

Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến

NV
29 tháng 2 2020

\(a-b+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\frac{\left(a-b\right)b.1}{b\left(a-b\right)}}=3\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(VT=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)

\(VT\ge4\sqrt[4]{\frac{4\left(a-b\right)\left(b+1\right)^2}{4\left(a-b\right)\left(b+1\right)^2}}-1=3\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)

\(\frac{a-b}{2}+\frac{a-b}{2}+\frac{1}{b\left(a-b\right)^2}+b\ge4\sqrt[4]{\frac{b\left(a-b\right)^2}{4b\left(a-b\right)^2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\frac{3\sqrt{2}}{2}\\b=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

3 tháng 3 2018

M=\(\frac{a^4}{a\left(b+1\right)^2}+\frac{b^4}{b\left(a+1\right)^2}\)

áp dụng bdt bunhiacopxki ta co

(a+b)M>=\(\left(\frac{a^2}{b+1}+\frac{b^2}{a+1}\right)^2\)

\(\left(\frac{a^2}{b+1}+\frac{b^2}{a+1}\right)^2>=\left[\frac{\left(a+b^2\right)}{a+1+b+1}\right]^2\)

\(=\frac{\left(a+b\right)^4}{\left(a+b+2\right)^2}>=\frac{\left(a+b\right)^4}{4\left(a+b\right)^2}\)(do 2<=a+b)

=\(\frac{\left(a+b\right)^2}{4}\)

do do M(a+b)>=\(\frac{\left(a+b\right)^2}{4}\)

=>M>=\(\frac{a+b}{4}>=\frac{1}{2}\)

dau = xay ra <=> a=b=1

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

Bạn tham khảo lời giải bài 4 link sau:

Câu hỏi của Bonking - Toán lớp 9 | Học trực tuyến

7 tháng 7 2019

Bài giải rất hay, mình cảm ơn bạn nhiều

21 tháng 12 2015

\(A=a+\frac{1}{b\left(a-b\right)^2}=\frac{\left(a-b\right)}{2}+\frac{\left(a-b\right)}{2}+b+\frac{1}{b\left(a-b\right)^2}\ge4\sqrt[4]{\frac{1}{4}}=2\sqrt{2}\)

( cô si )