Tìm x là số nguyên, thỏa mãn:
\(\frac{x}{7}=\frac{x+1}{14}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(xy-y=x\Leftrightarrow y=\frac{x}{x-1}=1+\frac{1}{x-1}\)
y thuộc Z => x -1 thuộc U(1) ={ -1;1}
+x =-1 => y =0
+x =1 => y =2
2) \(x.\left(1-\frac{1}{7}\right)<1\frac{6}{7}\Leftrightarrow x.\frac{6}{7}<\frac{13}{7}\Rightarrow x<\frac{13}{7}.\frac{7}{6}=\frac{13}{6}=2,1\left(6\right)\)
x thuộc Z+ => x thuộc {1;2}
Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :
http://olm.vn/hoi-dap/question/314450.html
giải thế này chăng ???
xy+1=0
=>xy=-1
\(\Leftrightarrow\frac{x^2y+2x}{xy+1}=\frac{10}{7}\)
\(\Rightarrow\frac{x^2y+2x}{xy+1}-\frac{10}{7}=0\)
\(\Rightarrow\frac{\left(7x^2-10x\right)y+14x-10}{7\left(xy+1\right)}=0\)
<=>(7x2-10x)y+14x-10=0
\(\Rightarrow\frac{1}{7\left(xy+1\right)}=0\)
=>x(7x-10)=0
<=>7x2-10x=0
áp dụng denta ta có :
=>(-10)2-(4.7.0)=100
\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{D}}{2a}=\frac{+-\sqrt{100}+\left(10\right)}{14}\)
=>x1=\(\frac{10}{7}\) ; x2=0
a, => (x-10/30 - 3) + (x-14/43 - 2) + (x-5/95 - 1) + x-100/8 = 0 ( vì x-148/8 = x-100/8 + 48/8 = x-100/8 + 6 )
=> x-100/30 + x-100/43 + x-100/95 + x-100/8 = 0
=> (x-100).(1/30 + 1/43 + 1/95 + 1/8) = 0
=> x-100 = 0 ( vì 1/30+1/43+1/95+1/8 > 0 )
=> x = 100
Vậy x = 100
Tk mk nha
a) \(\frac{x}{7}+\frac{1}{14}=-\frac{1}{y}\)
\(\Rightarrow\frac{2x}{14}+\frac{1}{14}=\frac{-1}{y}\)
\(\Rightarrow\frac{2x+1}{14}=\frac{-1}{y}\)
\(\Rightarrow\left(2x+1\right).y=\left(-1\right).14=\left(-14\right)\)
Ta có bảng sau :
2x + 1 | 1 | -1 | 14 | -14 | 2 | -2 | 7 | -7 |
2x | 0 | -2 | 13 | -15 | 1 | -3 | 6 | -8 |
x | 0 | -1 | \(\frac{13}{2}\) | \(\frac{-15}{2}\) | \(\frac{1}{2}\) | \(\frac{-3}{2}\) | 3 | -4 |
y | -14 | 14 | -1 | 1 | -7 | 7 | -2 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;14\right),\left(3;-2\right),\left(0;-14\right),\left(-4;2\right)\right\}\)
b) \(\frac{x}{9}+-\frac{1}{6}=-\frac{1}{y}\)
\(\Rightarrow\frac{2x}{18}+\frac{-3}{18}=\frac{-1}{y}\)
\(\Rightarrow\frac{2x-3}{18}=\frac{-1}{y}\)
\(\Rightarrow\left(2x-3\right).y=\left(-1\right).18=\left(-18\right)\)
Ta có bảng :
2x - 3 | 1 | -1 | 18 | -18 | 3 | -3 | 6 | -6 | 9 | -9 | -2 | 2 | ||||
2x | 4 | 2 | 21 | -15 | 6 | 0 | 9 | -3 | 12 | -6 | 1 | 5 | ||||
x | 2 | 1 | \(\frac{21}{2}\) | \(\frac{-15}{2}\) | 3 | 0 | \(\frac{9}{2}\) | \(\frac{-3}{2}\) | 6 | -3 | \(\frac{1}{2}\) | \(\frac{5}{2}\) | ||||
y | -18 | 18 | -1 | 1 | -6 | 6 | -3 | 3 | -2 | 2 | 9 | -9 |
Vậy \(\left(x;y\right)\in\left\{\left(2;-18\right),\left(1;18\right),\left(3;-6\right),\left(0;6\right),\left(6;-2\right),\left(-3,2\right)\right\}\)
\(\frac{x}{7}=\frac{x+1}{14}\)
\(\Rightarrow x\times14=\left(x+1\right)\times7\)
\(x\times14=x\times7+7\)
\(x\times14-x\times7=7\)
\(x\times\left(14-7\right)=7\)
\(x\times7=7\)'
\(\Rightarrow x=1\)
Ta có: \(\frac{x}{7}=\frac{x+1}{14}\)
=> \(\frac{2x}{14}=\frac{x+1}{14}\)
=> 2x = x + 1
=> 2x - x = 1
=> x = 1