Cho ΔABC và ΔA'B'C', biết AB=8cm, AC=6cm, BC=10cm. Cạnh lớn nhất của ΔA'B'C' là 25cm. Tính cạnh nhỏ nhất của ΔA'B'C'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e làm a,b chung luôn nha chị
Xét tam giác ABC và tam giác A`B`C`, có:
\(\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( gt )
Góc A = góc A` = 90 độ
=> tam giác ABC đồng dạng tam giác A`B`C`
=>\(\dfrac{AC}{A`C`}=\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( tính chất 2 tam giác đồng dạng )
Lời giải:
Giả sử $AB=3, AC=4, BC=5$ (cm)
Vì $3^2+4^2=5^2$ nên theo định lý Pitago đảo thì $ABC$ là tam giác vuông tại $A$
$A'B'C'$ đồng dạng với $ABC$ nên $A'B'C'$ là tam giác vuông tại $A'$
$\Rightarrow S_{A'B'C'}=\frac{A'B'.A'C'}{2}=54\Rightarrow A'B'.A'C'=108(*)$ (cm)
$ABC\sim A'B'C'\Rightarrow \frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}$
$\Leftrightarrow \frac{A'B'}{3}=\frac{B'C'}{5}=\frac{C'A'}{4}(**)$
Từ $(*); (**)$ suy ra $A'B'=9; B'C'=15; C'A'=12$ (cm)
a: \(AC=\sqrt{BC^2-AB^2}=5\sqrt{3}\left(cm\right)\)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
Suy ra: BA=BE và DA=DE
=>BD là đường trung trực của AE
hay BD\(\perp\)AE
ΔA'B'C' ΔA''B''C'' theo tỉ số đồng dạng k1 ⇒
ΔA''B''C'' ΔABC theo tỉ số đồng dạng k2 ⇒
Mà ΔA'B'C' ΔA''B''C''; ΔA''B''C'' ΔABC
⇒ ΔA'B'C' ΔABC (theo tính chất 3)
Tỉ số đồng dạng:
Vậy tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k1.k2.
Mệnh đề B đúng
Hình chữ nhật có 2 trục đối xứng (là 2 đường thẳng đi qua trung điểm của các cạnh đối diện)