Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là định lý Ceva nhé bạn!
Giả sử AA', BB', CC' đồng quy tại O.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{A'B}{A'C}=\dfrac{S_{OA'B}}{S_{OA'C}}=\dfrac{S_{AA'B}}{S_{AA'C}}=\dfrac{S_{AA'B}-S_{OA'B}}{S_{AA'C}-S_{OA'C}}=\dfrac{S_{OAB}}{S_{OAC}}\).
Chứng minh tương tự: \(\dfrac{B'C}{B'A}=\dfrac{S_{OBC}}{S_{OBA}};\dfrac{C'A}{C'B}=\dfrac{S_{OAC}}{S_{OBC}}\).
Nhân vế với vế của các đẳng thức trên ta có đpcm.
P/s: Ngoài ra còn có các cách khác như dùng định lý Thales,..)
\(AC=\sqrt{26^2-24^2}=10\left(cm\right)\)
\(IM=\sqrt{65^2-25^2}=60\left(cm\right)\)
Xét ΔABC vuông tại A và ΔIMN vuông tại I có
AB/IM=AC/IN
Do đó: ΔABC∼ΔIMN
Mệttttt partttt 2 ;-;
\(AC^2=BC^2-AB^2=\sqrt{26^2-24^2}\\ =10\\ MI^2=MN^2-IN^2=\sqrt{65^2-25^2}\\ =60\\ Ta.có:\\ \dfrac{AC}{IN}=\dfrac{AB}{IM}=\dfrac{BC}{MN}\left(vì\dfrac{10}{25}=\dfrac{24}{60}=\dfrac{26}{65}\right)\\ \Rightarrow\Delta ABC~\Delta IMN\)
Lời giải:
Giả sử $AB=3, AC=4, BC=5$ (cm)
Vì $3^2+4^2=5^2$ nên theo định lý Pitago đảo thì $ABC$ là tam giác vuông tại $A$
$A'B'C'$ đồng dạng với $ABC$ nên $A'B'C'$ là tam giác vuông tại $A'$
$\Rightarrow S_{A'B'C'}=\frac{A'B'.A'C'}{2}=54\Rightarrow A'B'.A'C'=108(*)$ (cm)
$ABC\sim A'B'C'\Rightarrow \frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}$
$\Leftrightarrow \frac{A'B'}{3}=\frac{B'C'}{5}=\frac{C'A'}{4}(**)$
Từ $(*); (**)$ suy ra $A'B'=9; B'C'=15; C'A'=12$ (cm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{A'B'}{3}=\dfrac{B'C'}{14}=\dfrac{C'A'}{13}=\dfrac{A'B'+B'C'+C'A'}{3+14+13}=\dfrac{90}{30}=3\)
Do đó: A'B'=9cm; B'C'=42cm; C'A'=39cm
e làm a,b chung luôn nha chị
Xét tam giác ABC và tam giác A`B`C`, có:
\(\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( gt )
Góc A = góc A` = 90 độ
=> tam giác ABC đồng dạng tam giác A`B`C`
=>\(\dfrac{AC}{A`C`}=\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( tính chất 2 tam giác đồng dạng )
=^= um dù sao cũm cảm ơn nhó:33