Tìm tất cả các số nguyên n để biểu thức A= n+6/ n-1 nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là số nguyên thì \(n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
\(A=\frac{n+6}{n-1}=\frac{n-1+7}{n-1}=1+\frac{7}{n-1}\inℤ\Leftrightarrow\frac{7}{n-1}\inℤ\)
mà \(n\)là số nguyên nên \(n-1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow n\in\left\{-6,0,2,8\right\}\).
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
Để A là số nguyên thì 3n+5 chia hết cho n+4
=>3n+12-7 chia hết cho n+4
=>n+4 thuộc {1;-1;7;-7}
=>n thuộc {-3;-5;3;-11}
A nguyên <=> n-1 là ước của 3
n-1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
Vậy n=-2;0;2;4 thì A nguyên
Để biểu thức A đạt giá trị nguyên
<=> 3 chia hết cho n-1
Vì 3 chia hết n-1
=> n-1 thuộc Ư(3)={-3;-1;1;3}
Ta có bảng sau:
n-1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Vậy các giá trị nguyên n thỏa mãn là -2;0;2;4
Ai k mik mik k lại. Chúc các bạn thi tốt
Để A là số nguyên
=> 2 chia hết cho n-1
=> n-1 thuộc U(2)={-1 ; 1 ; -2 ; 2 }
Ta có bẳng :
n-1 | -1 | -2 | 1 | 2 |
n | 0 | -1 | 2 | 3 |
Tự đáp số ...
\(A=\frac{2}{n-1}\) là số nguyên khi \(2⋮n-1\)
\(\Rightarrow n-1\inƯ\left(2\right)\)
\(\Rightarrow n-1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow n\in\left\{-1;0;2;3\right\}\)
Chúc bạn học tốt
để A là số nguyên thì 2 phải chia hết cho n-1 => n -1 thuộc ước của 2
Ư (2) = { 1;-1;2;-2} nếu n-1= 1 =>n =2 n-1=-1=> n = 0 n-1=2 => n=3 n-1=-2 => n= -1
vậy n ={ 2;0;3;-1} thì A là số nguyên
a, mẫu số khác 0 -> n khác 1. Vì 5 là số nguyên tố nên muôn A tối giản ( tử số và mẫu số ko cùng chia hết cho số nào khác 1 ) thì 5 ko chia hết cho n-1 hoặc n-1 ko đc chia hết cho 5.-> n khác 5k+1 ( k thuộc Z)
b. Gọi UCLN (n,n+1) = d -> n chia hết cho d; n+1 chia hết cho d
->(n+1) - n chia hết cho d -> 1 chia hết cho d -> d=1
UCLN(n,n+1) = 1 thì phân số tối giản
Để A nguyên thì \(n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
để A là số nguyên thì
n+6 chia hết cho n-1
=>(n-1)+7chia hết n-1
=>7chia hết n-1
n-1 thuộc Ư(7)
cậu lập bảng sau đó kết luận hộ tớ nhé
tớ ko lập bảng được