Cho E= \(\frac{5-x}{x-2}\)>Tìm x thuộc Z để
a, E thuộc Z
b,E có giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\) \(\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\sqrt{x}}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\)\(\left[\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(E=\frac{x}{\sqrt{x}-1}\)
b) \(E>1\Leftrightarrow\frac{x}{\sqrt{x}-1}>1\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-1>0\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{x-2\sqrt{x}+1+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Rightarrow\sqrt{x}-1>0\) vì tử của phân số luôn \(\ge0\forall x\ge0\)
\(\Rightarrow x>1\)
kết hợp với ĐKXĐ \(x\ge0\Rightarrow x>1\)
vậy \(x>1\) thì \(E>1\)
Ta có :
\(E=\frac{5-x}{x-2}=\frac{5-\left(x-2\right)-2}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}\)\(-1\)
\(\Rightarrow x-2\inƯ\left(3\right)\)mà Ư(3) = {-3;-1;1;3} => \(x-2\in\left\{-3;-1;1;\right\}\)
\(\Rightarrow x\in\left\{-1;1;3;5\right\}\)
Ủng hộ mk nha!!!
Để E nguyên thì 5 - x chia hết cho x - 2
Mà x -2 chia hết cho x -2
=> ( 5 - x ) + ( x - 2 ) chia hết cho x -2
=> 3 chia hết cho x -2
=> x -2 thuộc Ư(3) = { -3 ; -1 ; 1 ;3}
=> x thuộc { -1 ; 1 ; 3 ; 5}
Lời giải:
Ta có:
$E=\frac{5-3x}{4x-8}=\frac{1}{4}.\frac{5-3x}{x-2}=\frac{1}{4}(\frac{1}{2-x}-3)$
Để $E$ nhỏ nhất thì $\frac{1}{2-x}$ nhỏ nhất.
Điều này xảy ra khi $2-x$ là số âm lớn nhất.
Mà $x\in\mathbb{Z}$ nên $2-x\in\mathbb{Z}$
$\Rightarrow 2-x$ âm lớn nhất bằng $-1$
Khi đó, E nhỏ nhất bằng $\frac{1}{4}(-1-3)=-1$
\(a,M=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)
\(=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\right]\)
\(=1:\left[\frac{\left(x^2+2\right)+\left(x+1\right)\left(x-1\right)+\left(-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\left[\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\frac{x}{x^2+x+1}=\frac{x^2+x+1}{x}\)
a) \(E=\left(\frac{1}{x+2}+\frac{1}{x-2}\right).\frac{x-2}{x}\left(ĐKXĐ:x\ne0;x\ne\pm2\right)\)
\(=\left(\frac{x-2+x+2}{\left(x+2\right)\left(x-2\right)}\right).\frac{x-2}{x}\)
\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}.\frac{x-2}{x}=\frac{2x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=\frac{2}{x+2}\)
b) Khi x = 6 \(\Rightarrow E=\frac{2}{x+2}=\frac{2}{6+2}=\frac{2}{8}=\frac{1}{4}\)
c) \(E=4\Leftrightarrow\frac{2}{x+2}=4\Leftrightarrow4\left(x+2\right)=2\Leftrightarrow4x+8=2\Leftrightarrow x=\frac{-3}{2}\)
Vậy để E = 4 thì x = -3/2
d) \(E>0\Leftrightarrow\frac{2}{x+2}>0\Leftrightarrow2>0\)
Vậy phương trình vô nghiệm
e) \(E\in Z\Leftrightarrow x+2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Nếu x + 2 = 1 thì x = -1
Nếu x + 2 = -1 thì x = -3
Nếu x + 2 = 2 thì x = 0
Nếu x + 2 = -2 thì x = -4
Vậy ...
Nek bạn giải thích hộ mik tí nữa nhé :Tại sao 2 > 0 thì phương trình lại vô nghiệm ?
E = 5-x/x-2 nguyên khi
5 - x ⋮ x - 2
=> x - 2 + 7 ⋮ x - 2
=> 7 ⋮ x - 2
=> x - 2 thuộc Ư(7)
Còn ý b bạn